These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 3609018)
1. Structural consequences of heme isomerism in monomeric hemoglobins from Glycera dibranchiata. Cooke RM; Wright PE Eur J Biochem; 1987 Jul; 166(2):409-14. PubMed ID: 3609018 [TBL] [Abstract][Full Text] [Related]
2. NMR studies of the heme pocket conformations of monomeric hemoglobins from Glycera dibranchiata. Implications for ligand binding. Cooke RM; Dalvit C; Narula SS; Wright PE Eur J Biochem; 1987 Jul; 166(2):399-408. PubMed ID: 3609017 [TBL] [Abstract][Full Text] [Related]
3. Anomalous pH dependence of the heme-bound carbon monoxide spectroscopic properties in the Glycera dibranchiata monomer hemoglobin fraction compared to vertebrate hemoglobins. Satterlee JD Biochim Biophys Acta; 1984 Dec; 791(3):384-94. PubMed ID: 6518167 [TBL] [Abstract][Full Text] [Related]
4. The structural bases for the unique ligand binding properties of Glycera dibranchiata hemoglobins. A resonance Raman study. Carson SD; Constantinidis I; Mintorovitch J; Satterlee JD; Ondrias MR J Biol Chem; 1986 Feb; 261(5):2246-55. PubMed ID: 3944134 [TBL] [Abstract][Full Text] [Related]
5. CD studies on the reversed heme orientation in monomeric Glycera dibranchiata hemoglobins. Santucci R; Mintorovitch J; Constantinidis I; Satterlee JD; Ascoli F Biochim Biophys Acta; 1988 Mar; 953(2):201-4. PubMed ID: 3349089 [TBL] [Abstract][Full Text] [Related]
6. Crystal structures of unligated and CN-ligated Glycera dibranchiata monomer ferric hemoglobin components III and IV. Park HJ; Yang C; Treff N; Satterlee JD; Kang C Proteins; 2002 Oct; 49(1):49-60. PubMed ID: 12211015 [TBL] [Abstract][Full Text] [Related]
7. Detailed NMR analysis of the heme-protein interactions in component IV Glycera dibranchiata monomeric hemoglobin-CO. Alam SL; Volkman BF; Markley JL; Satterlee JD J Biomol NMR; 1998 Feb; 11(2):119-33. PubMed ID: 9679291 [TBL] [Abstract][Full Text] [Related]
8. Haem-binding-site heterogeneity and haem Cotton effects of Glycera dibranchiata monomeric haemoglobins. DiFeo TJ; Addison AW Biochem J; 1989 Jun; 260(3):863-71. PubMed ID: 2764907 [TBL] [Abstract][Full Text] [Related]
9. Glycera dibranchiata hemoglobin. Structure and refinement at 1.5 A resolution. Arents G; Love WE J Mol Biol; 1989 Nov; 210(1):149-61. PubMed ID: 2585515 [TBL] [Abstract][Full Text] [Related]
10. Conformational disorder of the distal leucine in monomeric Glycera hemoglobins and implications for oxygen binding. Cooke RM; Wright PE FEBS Lett; 1985 Aug; 187(2):219-23. PubMed ID: 4018261 [TBL] [Abstract][Full Text] [Related]
11. Isomeric incorporation of the haem into monomeric haemoglobins of Chironomus thummi thummi. 1. Isolation of chemically homogeneous haemoglobins. Evidence for the isomerism of the haem in the component III. Ribbing W; Rüterjans H Eur J Biochem; 1980; 108(1):79-87. PubMed ID: 7408855 [TBL] [Abstract][Full Text] [Related]
12. The heterogeneity of the polymeric intracellular hemoglobin of Glycera dibranchiata and the cDNA-derived amino acid sequence of one component. Zafar RS; Chow LH; Stern MS; Vinogradov SN; Walz DA Biochim Biophys Acta; 1990 Nov; 1041(2):117-22. PubMed ID: 2265197 [TBL] [Abstract][Full Text] [Related]
13. Sequential assignment of proton resonances in the NMR spectrum of Zn-substituted alpha chains from human hemoglobin. Ligand-induced tertiary changes in the heme pocket. Martineau L; Craescu CT Eur J Biochem; 1993 Jun; 214(2):383-93. PubMed ID: 8513788 [TBL] [Abstract][Full Text] [Related]
14. Isoelectric focusing purity criteria and 1H NMR detectable spectroscopic heterogeneity in the major isolated monomer hemoglobins from Glycera dibranchiata. Constantinidis I; Satterlee JD Biochemistry; 1987 Dec; 26(24):7779-86. PubMed ID: 3427104 [TBL] [Abstract][Full Text] [Related]
15. Complete heme proton hyperfine resonance assignments of the Glycera dibranchiata component IV metcyano monomer hemoglobin. Alam SL; Satterlee JD Biochemistry; 1994 Apr; 33(13):4008-18. PubMed ID: 8142405 [TBL] [Abstract][Full Text] [Related]
16. A nuclear overhauser study of heme orientational isomerism in monomeric Chironomus hemoglobins. Peyton DH; La Mar GN; Gersonde K Biochim Biophys Acta; 1988 Apr; 954(1):82-94. PubMed ID: 3358941 [TBL] [Abstract][Full Text] [Related]
17. Phosphines as a new structural probe of hemoglobin. 1H-NMR evidence for perturbations in the beta heme pocket induced by a thiol reagent. Bondon A; Sodano P; Simonneaux G; Craescu CT Biochim Biophys Acta; 1987 Aug; 914(3):289-93. PubMed ID: 3620477 [TBL] [Abstract][Full Text] [Related]
18. Solution structure and backbone dynamics of component IV Glycera dibranchiata monomeric hemoglobin-CO. Volkman BF; Alam SL; Satterlee JD; Markley JL Biochemistry; 1998 Aug; 37(31):10906-19. PubMed ID: 9692983 [TBL] [Abstract][Full Text] [Related]
19. Proton nuclear Overhauser effect investigation of the heme pockets in ligated hemoglobin: conformational differences between oxy and carbonmonoxy forms. Dalvit C; Ho C Biochemistry; 1985 Jul; 24(14):3398-407. PubMed ID: 4041419 [TBL] [Abstract][Full Text] [Related]
20. Glycera dibranchiata hemoglobin. X-ray structure of carbonmonoxide hemoglobin at 1.5 A resolution. Braden BC; Arents G; Padlan EA; Love WE J Mol Biol; 1994 Apr; 238(1):42-53. PubMed ID: 8145255 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]