These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 36090252)

  • 1. The regulatory landscape of neurite development in
    Godini R; Fallahi H; Pocock R
    Front Mol Neurosci; 2022; 15():974208. PubMed ID: 36090252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurite Branching Regulated by Neuronal Cell Surface Molecules in
    Jin H; Kim B
    Front Neuroanat; 2020; 14():59. PubMed ID: 32973467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. VANG-1 and PRKL-1 cooperate to negatively regulate neurite formation in Caenorhabditis elegans.
    Sanchez-Alvarez L; Visanuvimol J; McEwan A; Su A; Imai JH; Colavita A
    PLoS Genet; 2011 Sep; 7(9):e1002257. PubMed ID: 21912529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MBR-1, a novel helix-turn-helix transcription factor, is required for pruning excessive neurites in Caenorhabditis elegans.
    Kage E; Hayashi Y; Takeuchi H; Hirotsu T; Kunitomo H; Inoue T; Arai H; Iino Y; Kubo T
    Curr Biol; 2005 Sep; 15(17):1554-9. PubMed ID: 16139210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The comprehensive transcriptional analysis in Caenorhabditis elegans by integrating ChIP-seq and gene expression data.
    He K; Shao J; Zhao Z; Liu D
    Genet Res (Camb); 2014; 96():e005. PubMed ID: 25023089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct 3-O-sulfated heparan sulfate modification patterns are required for kal-1-dependent neurite branching in a context-dependent manner in Caenorhabditis elegans.
    Tecle E; Diaz-Balzac CA; Bülow HE
    G3 (Bethesda); 2013 Mar; 3(3):541-52. PubMed ID: 23451335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurite sprouting and synapse deterioration in the aging Caenorhabditis elegans nervous system.
    Toth ML; Melentijevic I; Shah L; Bhatia A; Lu K; Talwar A; Naji H; Ibanez-Ventoso C; Ghose P; Jevince A; Xue J; Herndon LA; Bhanot G; Rongo C; Hall DH; Driscoll M
    J Neurosci; 2012 Jun; 32(26):8778-90. PubMed ID: 22745480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intron-specific patterns of divergence of lin-11 regulatory function in the C. elegans nervous system.
    Amon S; Gupta BP
    Dev Biol; 2017 Apr; 424(1):90-103. PubMed ID: 28215941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C. elegans fmi-1/flamingo and Wnt pathway components interact genetically to control the anteroposterior neurite growth of the VD GABAergic neurons.
    Huarcaya Najarro E; Ackley BD
    Dev Biol; 2013 May; 377(1):224-35. PubMed ID: 23376536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Mechanisms Directing Spine Outgrowth and Synaptic Partner Selection in
    Oliver D; Alexander K; Francis MM
    J Exp Neurosci; 2018; 12():1179069518816088. PubMed ID: 30546264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome Analysis of Insulin Signaling-Associated Transcription Factors in
    Kaushik N; Rastogi S; Verma S; Pandey D; Halder A; Mukhopadhyay A; Kumar N
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Digital quantification of neurite outgrowth and retraction by phase-contrast microscopy: A tau perspective.
    Cook B; Proctor D; Bromberg R; LaPointe NE; Feinstein SC; Wilson L
    Methods Cell Biol; 2017; 141():217-228. PubMed ID: 28882303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic effects of 3D ECM and chemogradients on neurite outgrowth and guidance: a simple modeling and microfluidic framework.
    Srinivasan P; Zervantonakis IK; Kothapalli CR
    PLoS One; 2014; 9(6):e99640. PubMed ID: 24914812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of C. elegans presynaptic differentiation and neurite branching via a novel signaling pathway initiated by SAM-10.
    Zheng Q; Schaefer AM; Nonet ML
    Development; 2011 Jan; 138(1):87-96. PubMed ID: 21115607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensory Axon Growth Requires Spatiotemporal Integration of CaSR and TrkB Signaling.
    Markworth R; Adolfs Y; Dambeck V; Steinbeck LM; Lizé M; Pasterkamp RJ; Bähr M; Dean C; Burk K
    J Neurosci; 2019 Jul; 39(30):5842-5860. PubMed ID: 31123102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct effects of tubulin isotype mutations on neurite growth in
    Zheng C; Diaz-Cuadros M; Nguyen KCQ; Hall DH; Chalfie M
    Mol Biol Cell; 2017 Oct; 28(21):2786-2801. PubMed ID: 28835377
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Hess M; Gomariz A; Goksel O; Ewald CY
    eNeuro; 2019; 6(4):. PubMed ID: 31217194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Guidance of neuroblast migrations and axonal projections in Caenorhabditis elegans.
    Wadsworth WG; Hedgecock EM
    Curr Opin Neurobiol; 1992 Feb; 2(1):36-41. PubMed ID: 1638133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A trophic role for Wnt-Ror kinase signaling during developmental pruning in Caenorhabditis elegans.
    Hayashi Y; Hirotsu T; Iwata R; Kage-Nakadai E; Kunitomo H; Ishihara T; Iino Y; Kubo T
    Nat Neurosci; 2009 Aug; 12(8):981-7. PubMed ID: 19561603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A transcription factor collective defines the HSN serotonergic neuron regulatory landscape.
    Lloret-Fernández C; Maicas M; Mora-Martínez C; Artacho A; Jimeno-Martín Á; Chirivella L; Weinberg P; Flames N
    Elife; 2018 Mar; 7():. PubMed ID: 29553368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.