These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 36090388)

  • 1. Recent advances utilized in artificial switchable catalysis.
    Ghorbani-Choghamarani A; Taherinia Z
    RSC Adv; 2022 Aug; 12(36):23595-23617. PubMed ID: 36090388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial switchable catalysts.
    Blanco V; Leigh DA; Marcos V
    Chem Soc Rev; 2015 Aug; 44(15):5341-70. PubMed ID: 25962337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox-Switchable Ring-Opening Polymerization with Ferrocene Derivatives.
    Wei J; Diaconescu PL
    Acc Chem Res; 2019 Feb; 52(2):415-424. PubMed ID: 30707548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beyond stereoselectivity, switchable catalysis: some of the last frontier challenges in ring-opening polymerization of cyclic esters.
    Guillaume SM; Kirillov E; Sarazin Y; Carpentier JF
    Chemistry; 2015 May; 21(22):7988-8003. PubMed ID: 25832549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in externally controlled ring-opening polymerisations.
    Kaler S; Jones MD
    Dalton Trans; 2022 Jan; 51(4):1241-1256. PubMed ID: 34918735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow-Assisted Switchable Catalysis of Metal Ions in a Microenvelope System Embedded with Core-Shell Polymers.
    Vishwakarma NK; Hwang YH; Adiyala PR; Kim DP
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):43104-43111. PubMed ID: 30444347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light switching for product selectivity control in photocatalysis.
    Peelikuburage BGD; Martens WN; Waclawik ER
    Nanoscale; 2024 May; 16(21):10168-10207. PubMed ID: 38722105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in the Synthesis and Application of Polymer Compartments for Catalysis.
    Nghiem TL; Coban D; Tjaberings S; Gröschel AH
    Polymers (Basel); 2020 Sep; 12(10):. PubMed ID: 32987965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation networks of metal-organic cages controlled by chemical stimuli.
    Benchimol E; Nguyen BT; Ronson TK; Nitschke JR
    Chem Soc Rev; 2022 Jun; 51(12):5101-5135. PubMed ID: 35661155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent progress in asymmetric bifunctional catalysis using multimetallic systems.
    Shibasaki M; Kanai M; Matsunaga S; Kumagai N
    Acc Chem Res; 2009 Aug; 42(8):1117-27. PubMed ID: 19435320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic Synthesis Using Environmentally Benign Acid Catalysis.
    Kokel A; Schäfer C; Török B
    Curr Org Synth; 2019; 16(4):615-649. PubMed ID: 31984932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis.
    Lewis JC
    Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimuli-Responsive DNA-Based Hydrogels: From Basic Principles to Applications.
    Kahn JS; Hu Y; Willner I
    Acc Chem Res; 2017 Apr; 50(4):680-690. PubMed ID: 28248486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Switchable aqueous catalytic systems for organic transformations.
    Das N; Maity C
    Commun Chem; 2022 Sep; 5(1):115. PubMed ID: 36697818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Traffic Lights for Catalysis: Stimuli-Responsive Molecular and Extended Catalytic Systems.
    Thaggard GC; Haimerl J; Fischer RA; Park KC; Shustova NB
    Angew Chem Int Ed Engl; 2023 Jul; 62(29):e202302859. PubMed ID: 36995914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanostructured catalysts for organic transformations.
    Chng LL; Erathodiyil N; Ying JY
    Acc Chem Res; 2013 Aug; 46(8):1825-37. PubMed ID: 23350747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible Zirconium Metal-Organic Frameworks as Bioinspired Switchable Catalysts.
    Yuan S; Zou L; Li H; Chen YP; Qin J; Zhang Q; Lu W; Hall MB; Zhou HC
    Angew Chem Int Ed Engl; 2016 Aug; 55(36):10776-80. PubMed ID: 27346468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site Isolation in Metal-Organic Frameworks Enables Novel Transition Metal Catalysis.
    Drake T; Ji P; Lin W
    Acc Chem Res; 2018 Sep; 51(9):2129-2138. PubMed ID: 30129753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Switchable divergent asymmetric synthesis via organocatalysis.
    Zhan G; Du W; Chen YC
    Chem Soc Rev; 2017 Mar; 46(6):1675-1692. PubMed ID: 28221384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible Structural Transformations of Metal-Organic Frameworks as Artificial Switchable Catalysts for Dynamic Control of Selectively Cyanation Reaction.
    Huang C; Li G; Zhang L; Zhang Y; Mi L; Hou H
    Chemistry; 2019 Aug; 25(44):10366-10374. PubMed ID: 31044467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.