These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 36090390)

  • 1. Surface acoustic wave-based generation and transfer of droplets onto wettable substrates.
    Nampoothiri KN; Satpathi NS; Sen AK
    RSC Adv; 2022 Aug; 12(36):23400-23410. PubMed ID: 36090390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coalescence and wetting mechanism of Al droplets on different types of carbon for developing wettable cathodes: a molecular dynamics simulation.
    Lv X; Guan C; Han Z; Chen C; Sun Q
    Phys Chem Chem Phys; 2019 Oct; 21(38):21473-21484. PubMed ID: 31535116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mixing and internal dynamics of droplets impacting and coalescing on a solid surface.
    Castrejón-Pita JR; Kubiak KJ; Castrejón-Pita AA; Wilson MC; Hutchings IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023023. PubMed ID: 24032939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coalescence of Droplets in a Microwell Driven by Surface Acoustic Waves.
    Sudeepthi A; Nath A; Yeo LY; Sen AK
    Langmuir; 2021 Feb; 37(4):1578-1587. PubMed ID: 33478219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coalescence of spreading droplets on a wettable substrate.
    Ristenpart WD; McCalla PM; Roy RV; Stone HA
    Phys Rev Lett; 2006 Aug; 97(6):064501. PubMed ID: 17026171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulation and Mixing of 200 Femtoliter Droplets in Nanofluidic Channels Using MHz-Order Surface Acoustic Waves.
    Zhang N; Horesh A; Friend J
    Adv Sci (Weinh); 2021 Jul; 8(13):2100408. PubMed ID: 34258166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypergyrating Droplets Generated on a Selective Laser-Textured Heterogeneous Wettability Surface.
    Pan Q; Sun B; Liu W; Xue W; Cao Y
    Langmuir; 2020 Jul; 36(28):8123-8128. PubMed ID: 32564607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effect of Surface Wettability on Viscoelastic Droplet Dynamics under Electric Fields.
    Wei BS; Joo SW
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomization off thin water films generated by high-frequency substrate wave vibrations.
    Collins DJ; Manor O; Winkler A; Schmidt H; Friend JR; Yeo LY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056312. PubMed ID: 23214881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-Impact Behavior of a Droplet Impacting on a Permeable Metal Mesh with a Sharp Wettability Step.
    Sen U; Roy T; Chatterjee S; Ganguly R; Megaridis CM
    Langmuir; 2019 Oct; 35(39):12711-12721. PubMed ID: 31499000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comprehensive Review of Surface Acoustic Wave-Enabled Acoustic Droplet Ejection Technology and Its Applications.
    Ning J; Lei Y; Hu H; Gai C
    Micromachines (Basel); 2023 Jul; 14(8):. PubMed ID: 37630082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deicing of Sessile Droplets Using Surface Acoustic Waves.
    Nampoothiri KN; Nath A; Satpathi NS; Sen AK
    Langmuir; 2023 Mar; 39(11):3934-3941. PubMed ID: 36883239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic modulation and non-contact atomization of droplets based on the Fabry-Pérot resonator.
    Li J; Wang X; Yang F; Sun Y; Zhang L
    Lab Chip; 2024 Apr; 24(9):2418-2427. PubMed ID: 38525915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast Transport of Water Droplets over a Thermo-Switchable Surface Using Rewritable Wettability Gradient.
    Banuprasad TN; Vinay TV; Subash CK; Varghese S; George SD; Varanakkottu SN
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):28046-28054. PubMed ID: 28750164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface Acoustic Waves to Control Droplet Impact onto Superhydrophobic and Slippery Liquid-Infused Porous Surfaces.
    Biroun MH; Haworth L; Agrawal P; Orme B; McHale G; Torun H; Rahmati M; Fu Y
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):46076-46087. PubMed ID: 34520158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How water droplets evaporate on a superhydrophobic substrate.
    Gelderblom H; Marín ÁG; Nair H; van Houselt A; Lefferts L; Snoeijer JH; Lohse D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 2):026306. PubMed ID: 21405905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rayleigh wave scattering from sessile droplets.
    Quintero R; Simonetti F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043011. PubMed ID: 24229280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of Surface Roughness on the Contact Line and Splashing Dynamics of Impacting Droplets.
    Quetzeri-Santiago MA; Castrejón-Pita AA; Castrejón-Pita JR
    Sci Rep; 2019 Oct; 9(1):15030. PubMed ID: 31636321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SAW Synthesis With IDTs Array and the Inverse Filter: Toward a Versatile SAW Toolbox for Microfluidics and Biological Applications.
    Riaud A; Baudoin M; Thomas JL; Bou Matar O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Oct; 63(10):1601-1607. PubMed ID: 28873055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.