These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 36090520)

  • 21. Influence of testing environment on static fatigue behavior of a glass and a polycrystalline ceramic.
    Fraga S; Pereira GKR; Guilardi LF; May LG; Valandro LF; Kleverlaan CJ
    Braz Dent J; 2021; 32(3):56-64. PubMed ID: 34755790
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crack-healing during two-stage crystallization of biomedical lithium (di)silicate glass-ceramics.
    Belli R; Lohbauer U; Goetz-Neunhoeffer F; Hurle K
    Dent Mater; 2019 Aug; 35(8):1130-1145. PubMed ID: 31133402
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of heat treatment on fracture toughness K(IC) and microstructure of a fluorcanasite-based glass-ceramic.
    Oh WS; Zhang NZ; Anusavice KJ
    J Prosthodont; 2007; 16(6):439-44. PubMed ID: 17760868
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of microstructure on contact damage and strength degradation of micaceous glass-ceramics.
    Peterson IM; Wuttiphan S; Lawn BR; Chyung K
    Dent Mater; 1998 Jan; 14(1):80-9. PubMed ID: 9972155
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of subcritical crack growth in dental ceramics using fracture mechanics and fractography.
    Taskonak B; Griggs JA; Mecholsky JJ; Yan JH
    Dent Mater; 2008 May; 24(5):700-7. PubMed ID: 17845817
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of fatigue resistance and failure modes between metal-ceramic and all-ceramic crowns by cyclic loading in water.
    Nicolaisen MH; Bahrami G; Finlay S; Isidor F
    J Dent; 2014 Dec; 42(12):1613-20. PubMed ID: 25174946
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Accelerated loading frequency does not influence the fatigue behavior of polymer infiltrated ceramic network or lithium disilicate glass-ceramic restorations.
    Velho HC; Dapieve KS; Rocha Pereira GK; Fraga S; Valandro LF; Venturini AB
    J Mech Behav Biomed Mater; 2020 Oct; 110():103905. PubMed ID: 32957209
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigation of the fatigue behavior of adhesive bonding of the lithium disilicate glass ceramic with three resin cements using rotating fatigue method.
    Yassini E; Mirzaei M; Alimi A; Rahaeifard M
    J Mech Behav Biomed Mater; 2016 Aug; 61():62-69. PubMed ID: 26849028
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Grasping the Lithium hype: Insights into modern dental Lithium Silicate glass-ceramics.
    Lubauer J; Belli R; Peterlik H; Hurle K; Lohbauer U
    Dent Mater; 2022 Feb; 38(2):318-332. PubMed ID: 34961642
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of indenter material and size in veneer failure of brittle layer structures.
    Bhowmick S; Meléndez-Martínez JJ; Hermann I; Zhang Y; Lawn BR
    J Biomed Mater Res B Appl Biomater; 2007 Jul; 82(1):253-9. PubMed ID: 17183566
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of the foundation substrate on the fatigue behavior of bonded glass, zirconia polycrystals, and polymer infiltrated ceramic simplified CAD-CAM restorations.
    Machry RV; Borges ALS; Pereira GKR; Kleverlaan CJ; Venturini AB; Valandro LF
    J Mech Behav Biomed Mater; 2021 May; 117():104391. PubMed ID: 33618242
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design Equations for Mixed-Mode Fracture of Dental Ceramic-Cement Interfaces Using the Brazil-Nut-Sandwich Test.
    Manan DT; Kim J; de Melo RM; Zhang Y
    J Eng Mater Technol; 2021 Oct; 143(4):041006. PubMed ID: 35832730
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heat-pressed ionomer glass-ceramics. Part II. Mechanical property evaluation.
    Gorman CM; Hill RG
    Dent Mater; 2004 Mar; 20(3):252-61. PubMed ID: 15209230
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chairside CAD/CAM materials. Part 3: Cyclic fatigue parameters and lifetime predictions.
    Wendler M; Belli R; Valladares D; Petschelt A; Lohbauer U
    Dent Mater; 2018 Jun; 34(6):910-921. PubMed ID: 29678328
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contact damage as a failure mode during in vitro testing.
    Harvey CK; Kelly JR
    J Prosthodont; 1996 Jun; 5(2):95-100. PubMed ID: 9028211
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical characterization of dental ceramics by hertzian contacts.
    Peterson IM; Pajares A; Lawn BR; Thompson VP; Rekow ED
    J Dent Res; 1998 Apr; 77(4):589-602. PubMed ID: 9539462
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Static and fatigue mechanical behavior of three dental CAD/CAM ceramics.
    Homaei E; Farhangdoost K; Tsoi JKH; Matinlinna JP; Pow EHN
    J Mech Behav Biomed Mater; 2016 Jun; 59():304-313. PubMed ID: 26896763
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fatigue resistance of CAD/CAM resin composite molar crowns.
    Shembish FA; Tong H; Kaizer M; Janal MN; Thompson VP; Opdam NJ; Zhang Y
    Dent Mater; 2016 Apr; 32(4):499-509. PubMed ID: 26777092
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Time-dependent fracture probability of bilayer, lithium-disilicate-based, glass-ceramic, molar crowns as a function of core/veneer thickness ratio and load orientation.
    Anusavice KJ; Jadaan OM; Esquivel-Upshaw JF
    Dent Mater; 2013 Nov; 29(11):1132-8. PubMed ID: 24060349
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic.
    Elsaka SE; Elnaghy AM
    Dent Mater; 2016 Jul; 32(7):908-14. PubMed ID: 27087687
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.