These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 36090613)

  • 1. Metal-organic frameworks based surface-enhanced Raman spectroscopy technique for ultra-sensitive biomedical trace detection.
    Zhang Y; Xue C; Xu Y; Cui S; Ganeev AA; Kistenev YV; Gubal A; Chuchina V; Jin H; Cui D
    Nano Res; 2023; 16(2):2968-2979. PubMed ID: 36090613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances in Metal Organic Frameworks Based Surface Enhanced Raman Scattering Substrates: Synthesis and Applications.
    Wang P; Sun Y; Li X; Wang L; Xu Y; Li G
    Molecules; 2021 Jan; 26(1):. PubMed ID: 33401623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the Role of Metal-Organic Frameworks in Surface-Enhanced Raman Scattering Application.
    Huang C; Li A; Chen X; Wang T
    Small; 2020 Oct; 16(43):e2004802. PubMed ID: 32985111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Progress in the Application of Metal Organic Frameworks in Surface-Enhanced Raman Scattering Detection.
    Qin H; Zhao S; Gong H; Yu Z; Chen Q; Liang P; Zhang D
    Biosensors (Basel); 2023 Apr; 13(4):. PubMed ID: 37185554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-Organic Frameworks/Heterojunction Structures for Surface-Enhanced Raman Scattering with Enhanced Sensitivity and Tailorability.
    Yuan W; Jiao K; Yuan H; Sun H; Lim EG; Mitrovic I; Duan S; Cong S; Yong R; Li F; Song P
    ACS Appl Mater Interfaces; 2024 May; 16(20):26374-26385. PubMed ID: 38716706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile Regulation of Shell Thickness of the Au@MOF Core-Shell Composites for Highly Sensitive Surface-Enhanced Raman Scattering Sensing.
    Li B; Liu Y; Cheng J
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-Organic Frameworks as Surface Enhanced Raman Scattering Substrates with High Tailorability.
    Sun H; Cong S; Zheng Z; Wang Z; Chen Z; Zhao Z
    J Am Chem Soc; 2019 Jan; 141(2):870-878. PubMed ID: 30566339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human metabolite detection by surface-enhanced Raman spectroscopy.
    Lu Y; Lin L; Ye J
    Mater Today Bio; 2022 Jan; 13():100205. PubMed ID: 35118368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-Organic Frameworks-Based Optical Nanosensors for Analytical and Bioanalytical Applications.
    Wen C; Li R; Chang X; Li N
    Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembly of gold nanorods functionalized by zirconium-based metal-organic frameworks for surface enhanced Raman scattering.
    Li J; Liu Z; Tian D; Li B; Shao L; Lou Z
    Nanoscale; 2022 Apr; 14(14):5561-5568. PubMed ID: 35343993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible surface-enhanced Raman scatting substrates: recent advances in their principles, design strategies, diversified material selections and applications.
    Wang BX; Duan G; Xu W; Xu C; Jiang J; Yang Z; Wu Y; Pi F
    Crit Rev Food Sci Nutr; 2024; 64(2):472-516. PubMed ID: 35930338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic surface-enhanced Raman scattering nano-substrates for detection of anionic environmental contaminants: Current progress and future perspectives.
    Kitaw SL; Birhan YS; Tsai HC
    Environ Res; 2023 Mar; 221():115247. PubMed ID: 36640935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paper-based substrates for surface-enhanced Raman spectroscopy sensing.
    Cao Y; Sun Y; Yu RJ; Long YT
    Mikrochim Acta; 2023 Dec; 191(1):8. PubMed ID: 38052768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of affinity between target analytes and substrates in surface enhanced Raman spectroscopy for environmental pollutant detection.
    Wang S; Sun B; Feng J; An F; Li N; Wang H; Tian M
    Anal Methods; 2020 Dec; 12(47):5657-5670. PubMed ID: 33226038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AuNPs@MIL-101 (Cr) as a SERS-Active Substrate for Sensitive Detection of VOCs.
    Xie D; Wang R; Fu J; Zhao Z; Li M
    Front Bioeng Biotechnol; 2022; 10():921693. PubMed ID: 35800331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bio-imaging, detection and analysis by using nanostructures as SERS substrates.
    Xie W; Qiu P; Mao C
    J Mater Chem; 2011 Apr; 21(14):5190-5202. PubMed ID: 21625344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SERS-active metal-organic frameworks with embedded gold nanoparticles.
    Cao X; Hong S; Jiang Z; She Y; Wang S; Zhang C; Li H; Jin F; Jin M; Wang J
    Analyst; 2017 Jul; 142(14):2640-2647. PubMed ID: 28612075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate types and applications of MXene for surface-enhanced Raman spectroscopy.
    Liu ZW; Wang G; Li YF; Yu Y
    Front Chem; 2024; 12():1378985. PubMed ID: 38545468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic Nanostructures-Decorated ZIF-8-Derived Nanoporous Carbon for Surface-Enhanced Raman Scattering.
    Liao GY; Lien MC; Tadepalli S; Liu KK
    ACS Omega; 2022 Oct; 7(41):36427-36433. PubMed ID: 36278097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of magnetic nanoparticles in surface-enhanced Raman scattering (SERS) detection of environmental pollutants.
    Song D; Yang R; Long F; Zhu A
    J Environ Sci (China); 2019 Jun; 80():14-34. PubMed ID: 30952332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.