These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 36091202)

  • 1. Root-aligned SMILES: a tight representation for chemical reaction prediction.
    Zhong Z; Song J; Feng Z; Liu T; Jia L; Yao S; Wu M; Hou T; Song M
    Chem Sci; 2022 Aug; 13(31):9023-9034. PubMed ID: 36091202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ualign: pushing the limit of template-free retrosynthesis prediction with unsupervised SMILES alignment.
    Zeng K; Yang B; Zhao X; Zhang Y; Nie F; Yang X; Jin Y; Xu Y
    J Cheminform; 2024 Jul; 16(1):80. PubMed ID: 39010144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Transformer unifies reaction prediction and retrosynthesis across pharma chemical space.
    Lee AA; Yang Q; Sresht V; Bolgar P; Hou X; Klug-McLeod JL; Butler CR
    Chem Commun (Camb); 2019 Oct; 55(81):12152-12155. PubMed ID: 31497831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Permutation Invariant Graph-to-Sequence Model for Template-Free Retrosynthesis and Reaction Prediction.
    Tu Z; Coley CW
    J Chem Inf Model; 2022 Aug; 62(15):3503-3513. PubMed ID: 35881916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transfer Learning: Making Retrosynthetic Predictions Based on a Small Chemical Reaction Dataset Scale to a New Level.
    Bai R; Zhang C; Wang L; Yao C; Ge J; Duan H
    Molecules; 2020 May; 25(10):. PubMed ID: 32438572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substructure-based neural machine translation for retrosynthetic prediction.
    Ucak UV; Kang T; Ko J; Lee J
    J Cheminform; 2021 Jan; 13(1):4. PubMed ID: 33431017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Supervised Contrastive Molecular Representation Learning with a Chemical Synthesis Knowledge Graph.
    Xie J; Wang Y; Rao J; Zheng S; Yang Y
    J Chem Inf Model; 2024 Mar; 64(6):1945-1954. PubMed ID: 38484468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Transformer: A Model for Uncertainty-Calibrated Chemical Reaction Prediction.
    Schwaller P; Laino T; Gaudin T; Bolgar P; Hunter CA; Bekas C; Lee AA
    ACS Cent Sci; 2019 Sep; 5(9):1572-1583. PubMed ID: 31572784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NoiseMol: A noise-robusted data augmentation via perturbing noise for molecular property prediction.
    Jiang J; Zhang R; Yuan Y; Li T; Li G; Zhao Z; Yu Z
    J Mol Graph Model; 2023 Jun; 121():108454. PubMed ID: 36963306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MultiGran-SMILES: multi-granularity SMILES learning for molecular property prediction.
    Jiang J; Zhang R; Zhao Z; Ma J; Liu Y; Yuan Y; Niu B
    Bioinformatics; 2022 Sep; 38(19):4573-4580. PubMed ID: 35961025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CNN-based two-branch multi-scale feature extraction network for retrosynthesis prediction.
    Yang F; Liu J; Zhang Q; Yang Z; Zhang X
    BMC Bioinformatics; 2022 Sep; 23(1):362. PubMed ID: 36056300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments.
    Ucak UV; Ashyrmamatov I; Ko J; Lee J
    Nat Commun; 2022 Mar; 13(1):1186. PubMed ID: 35246540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De Novo Molecule Design by Translating from Reduced Graphs to SMILES.
    Pogány P; Arad N; Genway S; Pickett SD
    J Chem Inf Model; 2019 Mar; 59(3):1136-1146. PubMed ID: 30525594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning to SMILES: BAN-based strategies to improve latent representation learning from molecules.
    Wu CK; Zhang XC; Yang ZJ; Lu AP; Hou TJ; Cao DS
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34427296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RPBP: Deep Retrosynthesis Reaction Prediction Based on Byproducts.
    Yan Y; Zhao Y; Yao H; Feng J; Liang L; Han W; Xu X; Pu C; Zang C; Chen L; Li Y; Liu H; Lu T; Chen Y; Zhang Y
    J Chem Inf Model; 2023 Oct; 63(19):5956-5970. PubMed ID: 37724339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retrosynthesis prediction using an end-to-end graph generative architecture for molecular graph editing.
    Zhong W; Yang Z; Chen CY
    Nat Commun; 2023 May; 14(1):3009. PubMed ID: 37230985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Knowledge-based BERT: a method to extract molecular features like computational chemists.
    Wu Z; Jiang D; Wang J; Zhang X; Du H; Pan L; Hsieh CY; Cao D; Hou T
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35438145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the quality of chemical language model outcomes with atom-in-SMILES tokenization.
    Ucak UV; Ashyrmamatov I; Lee J
    J Cheminform; 2023 May; 15(1):55. PubMed ID: 37248531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning symmetry-aware atom mapping in chemical reactions through deep graph matching.
    Astero M; Rousu J
    J Cheminform; 2024 Apr; 16(1):46. PubMed ID: 38650016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis.
    Tetko IV; Karpov P; Van Deursen R; Godin G
    Nat Commun; 2020 Nov; 11(1):5575. PubMed ID: 33149154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.