These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36091413)

  • 1. Machine-learning improves understanding of glass formation in metallic systems.
    Forrest RM; Greer AL
    Digit Discov; 2022 Aug; 1(4):476-489. PubMed ID: 36091413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning-guided exploration and experimental assessment of unreported compositions in the quaternary Ti-Zr-Cu-Pd biocompatible metallic glass system.
    Douest Y; Forrest RM; Ter-Ovanessian B; Courtois N; Tancret F; Greer AL; Chevalier J; Fabrègue D
    Acta Biomater; 2024 Feb; 175():411-421. PubMed ID: 38135205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamically-guided machine learning modelling for predicting the glass-forming ability of bulk metallic glasses.
    Ghorbani A; Askari A; Malekan M; Nili-Ahmadabadi M
    Sci Rep; 2022 Jul; 12(1):11754. PubMed ID: 35817887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data-driven machine learning prediction of glass transition temperature and the glass-forming ability of metallic glasses.
    Zhang J; Zhao M; Zhong C; Liu J; Hu K; Lin X
    Nanoscale; 2023 Nov; 15(45):18511-18522. PubMed ID: 37946543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beyond packing of hard spheres: The effects of core softness, non-additivity, intermediate-range repulsion, and many-body interactions on the glass-forming ability of bulk metallic glasses.
    Zhang K; Fan M; Liu Y; Schroers J; Shattuck MD; O'Hern CS
    J Chem Phys; 2015 Nov; 143(18):184502. PubMed ID: 26567672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning Approach for Prediction and Understanding of Glass-Forming Ability.
    Sun YT; Bai HY; Li MZ; Wang WH
    J Phys Chem Lett; 2017 Jul; 8(14):3434-3439. PubMed ID: 28697303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the atomic level influencing factors of glass forming ability in NiAl and CuZr metallic glasses.
    Sedighi S; Kirk DW; Singh CV; Thorpe SJ
    J Chem Phys; 2015 Sep; 143(11):114509. PubMed ID: 26395721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-principles prediction and experimental verification of glass-forming ability in Zr-Cu binary metallic glasses.
    Yu CY; Liu XJ; Lu J; Zheng GP; Liu CT
    Sci Rep; 2013; 3():2124. PubMed ID: 23821016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How Many Bulk Metallic Glasses Are There?
    Li Y; Zhao S; Liu Y; Gong P; Schroers J
    ACS Comb Sci; 2017 Nov; 19(11):687-693. PubMed ID: 28902986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic-scale mechanisms of the glass-forming ability in metallic glasses.
    Yang L; Guo GQ; Chen LY; Huang CL; Ge T; Chen D; Liaw PK; Saksl K; Ren Y; Zeng QS; LaQua B; Chen FG; Jiang JZ
    Phys Rev Lett; 2012 Sep; 109(10):105502. PubMed ID: 23005298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation between the Arrhenius crossover and the glass forming ability in metallic glasses.
    Wen T; Yao W; Wang N
    Sci Rep; 2017 Oct; 7(1):13164. PubMed ID: 29030595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric crystallization during cooling and heating in model glass-forming systems.
    Wang M; Zhang K; Li Z; Liu Y; Schroers J; Shattuck MD; O'Hern CS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032309. PubMed ID: 25871112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Ho Addition on the Glass-Forming Ability and Crystallization Behaviors of Zr
    Lu S; Li X; Liang X; He J; Shao W; Li K; Chen J
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicted Optimum Composition for the Glass-Forming Ability of Bulk Amorphous Alloys: Application to Cu-Zr-Al.
    An Q; Samwer K; Goddard WA; Johnson WL; Jaramillo-Botero A; Garret G; Demetriou MD
    J Phys Chem Lett; 2012 Nov; 3(21):3143-8. PubMed ID: 26296020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-temperature bulk metallic glasses developed by combinatorial methods.
    Li MX; Zhao SF; Lu Z; Hirata A; Wen P; Bai HY; Chen M; Schroers J; Liu Y; Wang WH
    Nature; 2019 May; 569(7754):99-103. PubMed ID: 31043727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The atomic-scale mechanism for the enhanced glass-forming-ability of a Cu-Zr based bulk metallic glass with minor element additions.
    Wang Q; Liu CT; Yang Y; Liu JB; Dong YD; Lu J
    Sci Rep; 2014 Apr; 4():4648. PubMed ID: 24721927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compositional landscape for glass formation in metal alloys.
    Na JH; Demetriou MD; Floyd M; Hoff A; Garrett GR; Johnson WL
    Proc Natl Acad Sci U S A; 2014 Jun; 111(25):9031-6. PubMed ID: 24927600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beating Homogeneous Nucleation and Tuning Atomic Ordering in Glass-Forming Metals by Nanocalorimetry.
    Zhao B; Yang B; Abyzov AS; Schmelzer JWP; Rodríguez-Viejo J; Zhai Q; Schick C; Gao Y
    Nano Lett; 2017 Dec; 17(12):7751-7760. PubMed ID: 29111758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast surface dynamics enabled cold joining of metallic glasses.
    Ma J; Yang C; Liu X; Shang B; He Q; Li F; Wang T; Wei D; Liang X; Wu X; Wang Y; Gong F; Guan P; Wang W; Yang Y
    Sci Adv; 2019 Nov; 5(11):eaax7256. PubMed ID: 31803833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron-band theory inspired design of magnesium-precious metal bulk metallic glasses with high thermal stability and extended ductility.
    Laws KJ; Shamlaye KF; Granata D; Koloadin LS; Löffler JF
    Sci Rep; 2017 Jun; 7(1):3400. PubMed ID: 28611455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.