These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 36091414)

  • 1. Long-range dispersion-inclusive machine learning potentials for structure search and optimization of hybrid organic-inorganic interfaces.
    Westermayr J; Chaudhuri S; Jeindl A; Hofmann OT; Maurer RJ
    Digit Discov; 2022 Aug; 1(4):463-475. PubMed ID: 36091414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Hessian-based assessment of atomic forces for training machine learning interatomic potentials.
    Herbold M; Behler J
    J Chem Phys; 2022 Mar; 156(11):114106. PubMed ID: 35317596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic, redox, and optical property prediction of organic π-conjugated molecules through a hierarchy of machine learning approaches.
    Bhat V; Sornberger P; Pokuri BSS; Duke R; Ganapathysubramanian B; Risko C
    Chem Sci; 2022 Dec; 14(1):203-213. PubMed ID: 36605753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate Many-Body Repulsive Potentials for Density-Functional Tight Binding from Deep Tensor Neural Networks.
    Stöhr M; Medrano Sandonas L; Tkatchenko A
    J Phys Chem Lett; 2020 Aug; 11(16):6835-6843. PubMed ID: 32787209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast and Accurate Molecular Property Prediction: Learning Atomic Interactions and Potentials with Neural Networks.
    Tsubaki M; Mizoguchi T
    J Phys Chem Lett; 2018 Oct; 9(19):5733-5741. PubMed ID: 30081630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into lithium manganese oxide-water interfaces using machine learning potentials.
    Eckhoff M; Behler J
    J Chem Phys; 2021 Dec; 155(24):244703. PubMed ID: 34972388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerating the prediction of inorganic surfaces with machine learning interatomic potentials.
    Noordhoek K; Bartel CJ
    Nanoscale; 2024 Mar; 16(13):6365-6382. PubMed ID: 38470833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Van der Waals interactions between hydrocarbon molecules and zeolites: periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller-Plesset perturbation theory.
    Göltl F; Grüneis A; Bučko T; Hafner J
    J Chem Phys; 2012 Sep; 137(11):114111. PubMed ID: 22998253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning dielectric screening for the simulation of excited state properties of molecules and materials.
    Dong SS; Govoni M; Galli G
    Chem Sci; 2021 Mar; 12(13):4970-4980. PubMed ID: 34163744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Consistent structures and interactions by density functional theory with small atomic orbital basis sets.
    Grimme S; Brandenburg JG; Bannwarth C; Hansen A
    J Chem Phys; 2015 Aug; 143(5):054107. PubMed ID: 26254642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Throughput Condensed-Phase Hybrid Density Functional Theory for Large-Scale Finite-Gap Systems: The SeA Approach.
    Ko HY; Calegari Andrade MF; Sparrow ZM; Zhang JA; DiStasio RA
    J Chem Theory Comput; 2023 Jul; 19(13):4182-4201. PubMed ID: 37385014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A big data approach to the ultra-fast prediction of DFT-calculated bond energies.
    Qu X; Latino DA; Aires-de-Sousa J
    J Cheminform; 2013; 5():34. PubMed ID: 23849655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Harnessing machine learning for efficient large-scale interatomic potential for sildenafil and pharmaceuticals containing H, C, N, O, and S.
    Nikidis E; Kyriakopoulos N; Tohid R; Kachrimanis K; Kioseoglou J
    Nanoscale; 2024 Oct; 16(38):18014-18026. PubMed ID: 39252581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. General-Purpose Machine Learning Potentials Capturing Nonlocal Charge Transfer.
    Ko TW; Finkler JA; Goedecker S; Behler J
    Acc Chem Res; 2021 Feb; 54(4):808-817. PubMed ID: 33513012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gaussian approximation potentials for accurate thermal properties of two-dimensional materials.
    Kocabaş T; Keçeli M; Vázquez-Mayagoitia Á; Sevik C
    Nanoscale; 2023 May; 15(19):8772-8780. PubMed ID: 37098822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance and Cost Assessment of Machine Learning Interatomic Potentials.
    Zuo Y; Chen C; Li X; Deng Z; Chen Y; Behler J; Csányi G; Shapeev AV; Thompson AP; Wood MA; Ong SP
    J Phys Chem A; 2020 Jan; 124(4):731-745. PubMed ID: 31916773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Communication: Charge-population based dispersion interactions for molecules and materials.
    Stöhr M; Michelitsch GS; Tully JC; Reuter K; Maurer RJ
    J Chem Phys; 2016 Apr; 144(15):151101. PubMed ID: 27389199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strain data augmentation enables machine learning of inorganic crystal geometry optimization.
    Dinic F; Wang Z; Neporozhnii I; Salim UB; Bajpai R; Rajiv N; Chavda V; Radhakrishnan V; Voznyy O
    Patterns (N Y); 2023 Feb; 4(2):100663. PubMed ID: 36873906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transfer learning for chemically accurate interatomic neural network potentials.
    Zaverkin V; Holzmüller D; Bonfirraro L; Kästner J
    Phys Chem Chem Phys; 2023 Feb; 25(7):5383-5396. PubMed ID: 36748821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.