These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36091983)

  • 1. A learning-based synthesis approach of reward asynchronous probabilistic games against the linear temporal logic winning condition.
    Zhao W; Liu Z
    PeerJ Comput Sci; 2022; 8():e1094. PubMed ID: 36091983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Safe reinforcement learning under temporal logic with reward design and quantum action selection.
    Cai M; Xiao S; Li J; Kan Z
    Sci Rep; 2023 Feb; 13(1):1925. PubMed ID: 36732441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A formal methods approach to interpretable reinforcement learning for robotic planning.
    Li X; Serlin Z; Yang G; Belta C
    Sci Robot; 2019 Dec; 4(37):. PubMed ID: 33137718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Momentary subjective well-being depends on learning and not reward.
    Blain B; Rutledge RB
    Elife; 2020 Nov; 9():. PubMed ID: 33200989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mobile Robot Networks for Environmental Monitoring: A Cooperative Receding Horizon Temporal Logic Control Approach.
    Lu Q; Han QL
    IEEE Trans Cybern; 2019 Feb; 49(2):698-711. PubMed ID: 30452384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An approach to solving optimal control problems of nonlinear systems by introducing detail-reward mechanism in deep reinforcement learning.
    Yao S; Liu X; Zhang Y; Cui Z
    Math Biosci Eng; 2022 Jun; 19(9):9258-9290. PubMed ID: 35942758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Safe Decision Controller for Autonomous DrivingBased on Deep Reinforcement Learning inNondeterministic Environment.
    Chen H; Zhang Y; Bhatti UA; Huang M
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Collaborative Multiagent Reinforcement Learning Method Based on Policy Gradient Potential.
    Zhang Z; Ong YS; Wang D; Xue B
    IEEE Trans Cybern; 2021 Feb; 51(2):1015-1027. PubMed ID: 31443061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal Policy of Multiplayer Poker via Actor-Critic Reinforcement Learning.
    Shi D; Guo X; Liu Y; Fan W
    Entropy (Basel); 2022 May; 24(6):. PubMed ID: 35741495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning to maximize reward rate: a model based on semi-Markov decision processes.
    Khodadadi A; Fakhari P; Busemeyer JR
    Front Neurosci; 2014; 8():101. PubMed ID: 24904252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compositional RL Agents That Follow Language Commands in Temporal Logic.
    Kuo YL; Katz B; Barbu A
    Front Robot AI; 2021; 8():689550. PubMed ID: 34350213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on whale optimization algorithm.
    Ashraf NM; Mostafa RR; Sakr RH; Rashad MZ
    PLoS One; 2021; 16(6):e0252754. PubMed ID: 34111168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Experimental Safety Response Mechanism for an Autonomous Moving Robot in a Smart Manufacturing Environment Using Q-Learning Algorithm and Speech Recognition.
    Kiangala KS; Wang Z
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive Optimal Control for Stochastic Multiplayer Differential Games Using On-Policy and Off-Policy Reinforcement Learning.
    Liu M; Wan Y; Lewis FL; Lopez VG
    IEEE Trans Neural Netw Learn Syst; 2020 Dec; 31(12):5522-5533. PubMed ID: 32142455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Value learning and arousal in the extinction of probabilistic rewards: the role of dopamine in a modified temporal difference model.
    Song MR; Fellous JM
    PLoS One; 2014; 9(2):e89494. PubMed ID: 24586823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning to reach by reinforcement learning using a receptive field based function approximation approach with continuous actions.
    Tamosiunaite M; Asfour T; Wörgötter F
    Biol Cybern; 2009 Mar; 100(3):249-60. PubMed ID: 19229556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Live synthesis.
    Finkbeiner B; Klein F; Metzger N
    Innov Syst Softw Eng; 2022; 18(3):443-454. PubMed ID: 36118300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Punishment and Reward Backfill for Deep Q-Learning.
    Bonyadi MR; Wang R; Ziaei M
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; 34(10):8086-8093. PubMed ID: 35041613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A unified analysis of value-function-based reinforcement- learning algorithms.
    Szepesvári C; Littman ML
    Neural Comput; 1999 Nov; 11(8):2017-59. PubMed ID: 10578043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stationary Anonymous Sequential Games with Undiscounted Rewards.
    Więcek P; Altman E
    J Optim Theory Appl; 2015; 166(2):686-710. PubMed ID: 26300561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.