These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 3609200)

  • 1. A sequential double-label 14C- and 3H-2-DG technique: validation by double-dissociation of functional states.
    Friedman HR; Bruce CJ; Goldman-Rakic PS
    Exp Brain Res; 1987; 66(3):543-54. PubMed ID: 3609200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resolution of metabolic columns by a double-label 2-DG technique: interdigitation and coincidence in visual cortical areas of the same monkey.
    Friedman HR; Bruce CJ; Goldman-Rakic PS
    J Neurosci; 1989 Dec; 9(12):4111-21. PubMed ID: 2687438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High resolution autoradiography at the regional topographic level with [14C]2-deoxyglucose and [3H]2-deoxyglucose.
    Duncan GE; Stumpf WE; Pilgrim C; Breese GR
    J Neurosci Methods; 1987 Jun; 20(2):105-13. PubMed ID: 3600030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triple-tracer autoradiography of cerebral blood flow, glucose utilization, and protein synthesis in rat brain.
    Mies G; Bodsch W; Paschen W; Hossmann KA
    J Cereb Blood Flow Metab; 1986 Feb; 6(1):59-70. PubMed ID: 3944217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative measurement of local cerebral metabolic rate for glucose utilizing tritiated 2-deoxyglucose.
    Alexander GM; Schwartzman RJ; Bell RD; Yu J; Renthal A
    Brain Res; 1981 Oct; 223(1):59-67. PubMed ID: 7284810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long experimental durations are required for double label [14C]- and [3H]2-deoxyglucose autoradiographic methods.
    Ciricillo SF; Jasper MP; Gonzalez MF; Sharp FR
    Brain Res; 1991 Nov; 564(1):171-5. PubMed ID: 1777819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for 14C and 3H double-label autoradiography.
    Juhler M; Diemer NH
    J Cereb Blood Flow Metab; 1987 Oct; 7(5):572-7. PubMed ID: 3654797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of the cerebral uptake and metabolism of labeled glucose and deoxyglucose in vivo in rats.
    Sacks W; Sacks S; Fleischer A
    Neurochem Res; 1983 May; 8(5):661-85. PubMed ID: 6888655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A sequential double-label autoradiographic method that quantifies altered rates of regional glucose metabolism.
    Olds JL; Frey KA; Ehrenkaufer RL; Agranoff BW
    Brain Res; 1985 Dec; 361(1-2):217-24. PubMed ID: 4084794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations in activity at auditory nuclei of the rat induced by exposure to microwave radiation: autoradiographic evidence using [14C]2-deoxy-D-glucose.
    Wilson BS; Zook JM; Joines WT; Casseday JH
    Brain Res; 1980 Apr; 187(2):291-306. PubMed ID: 7370731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous determination of local cerebral glucose utilization and blood flow by carbon-14 double-label autoradiography: method of procedure and validation studies in the rat.
    Ginsberg MD; Smith DW; Wachtel MS; Gonzalez-Carvajal M; Busto R
    J Cereb Blood Flow Metab; 1986 Jun; 6(3):273-85. PubMed ID: 3711156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double-label autoradiographic deoxyglucose method for sequential measurement of regional cerebral glucose utilization.
    Redies C; Diksic M; Evans AC; Gjedde A; Yamamoto YL
    Neuroscience; 1987 Aug; 22(2):601-19. PubMed ID: 3670600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motion-induced alterations in 2-deoxyglucose uptake in brainstem nuclei of squirrel monkeys: autoradiographic and liquid scintillation studies.
    Brizzee KR; Dunlap WP
    Brain Behav Evol; 1983; 23(1-2):14-25. PubMed ID: 6652470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative film autoradiography for tritium: methodological considerations.
    Geary WA; Toga AW; Wooten GF
    Brain Res; 1985 Jun; 337(1):99-108. PubMed ID: 4005611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methods for 3H-2-D-deoxyglucose autoradiography on film and fine-grain emulsions.
    Faraco-Cantin F; Courville J; Lund JP
    Stain Technol; 1980 Jul; 55(4):247-52. PubMed ID: 7444985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased uptake of [3H]deoxyglucose and [14C]deoxyglucose in localized regions of the brain during stimulation of the motor cortex.
    Goldberg L; Courville J; Lund JP; Kauer JS
    Can J Physiol Pharmacol; 1980 Sep; 58(9):1086-91. PubMed ID: 7459699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A sequential double-label 2-deoxyglucose method for measuring regional cerebral metabolism.
    Altenau LL; Agranoff BW
    Brain Res; 1978 Sep; 153(2):375-81. PubMed ID: 687989
    [No Abstract]   [Full Text] [Related]  

  • 18. Cellular localization of 2-[3H]deoxy-D-glucose from paraffin-embedded brains.
    Durham D; Woolsey TA; Kruger L
    J Neurosci; 1981 May; 1(5):519-26. PubMed ID: 7346567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of [14C]glucose and [14C]deoxyglucose as tracers of brain glucose use.
    Hawkins RA; Mans AM; Davis DW; DeJoseph MR
    Am J Physiol; 1988 Mar; 254(3 Pt 1):E310-7. PubMed ID: 3348390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of blood glucose levels on [14C]2-deoxyglucose uptake in rat brain tissue.
    Young WG; Deutsch JA
    Neurosci Lett; 1980 Oct; 20(1):89-93. PubMed ID: 7052552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.