These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 36092272)

  • 21. Single-Stage Astaxanthin Production Enhances the Nonmevalonate Pathway and Photosynthetic Central Metabolism in
    Hasunuma T; Takaki A; Matsuda M; Kato Y; Vavricka CJ; Kondo A
    ACS Synth Biol; 2019 Dec; 8(12):2701-2709. PubMed ID: 31653173
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Research of Fluridone's Effects on Growth and Pigment Accumulation of
    Sun J; Zan J; Zang X
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328543
    [No Abstract]   [Full Text] [Related]  

  • 23. Improved Astaxanthin Production with
    Henke NA; Wendisch VF
    Mar Drugs; 2019 Oct; 17(11):. PubMed ID: 31683510
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative transcriptome analysis of a long-time span two-step culture process reveals a potential mechanism for astaxanthin and biomass hyper-accumulation in
    Huang L; Gao B; Wu M; Wang F; Zhang C
    Biotechnol Biofuels; 2019; 12():18. PubMed ID: 30705704
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Directed evolution of the fusion enzyme for improving astaxanthin biosynthesis in
    Ding YW; Lu CZ; Zheng Y; Ma HZ; Jin J; Jia B; Yuan YJ
    Synth Syst Biotechnol; 2023 Mar; 8(1):46-53. PubMed ID: 36408203
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production and excretion of astaxanthin by engineered Yarrowia lipolytica using plant oil as both the carbon source and the biocompatible extractant.
    Li N; Han Z; O'Donnell TJ; Kurasaki R; Kajihara L; Williams PG; Tang Y; Su WW
    Appl Microbiol Biotechnol; 2020 Aug; 104(16):6977-6989. PubMed ID: 32601736
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimizing the localization of astaxanthin enzymes for improved productivity.
    Ye L; Zhu X; Wu T; Wang W; Zhao D; Bi C; Zhang X
    Biotechnol Biofuels; 2018; 11():278. PubMed ID: 30337957
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid Gene Target Tracking for Enhancing β-Carotene Production Using Flow Cytometry-Based High-Throughput Screening in Yarrowia lipolytica.
    Liu M; Zhang J; Liu X; Hou J; Qi Q
    Appl Environ Microbiol; 2022 Oct; 88(19):e0114922. PubMed ID: 36094200
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering the oleaginous yeast Yarrowia lipolytica to produce the aroma compound β-ionone.
    Czajka JJ; Nathenson JA; Benites VT; Baidoo EEK; Cheng Q; Wang Y; Tang YJ
    Microb Cell Fact; 2018 Sep; 17(1):136. PubMed ID: 30172260
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alleviation of metabolic bottleneck by combinatorial engineering enhanced astaxanthin synthesis in Saccharomyces cerevisiae.
    Zhou P; Xie W; Li A; Wang F; Yao Z; Bian Q; Zhu Y; Yu H; Ye L
    Enzyme Microb Technol; 2017 May; 100():28-36. PubMed ID: 28284309
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of cyanobacterial carotenoid ketolase CrtW and hydroxylase CrtR by complementation analysis in Escherichia coli.
    Makino T; Harada H; Ikenaga H; Matsuda S; Takaichi S; Shindo K; Sandmann G; Ogata T; Misawa N
    Plant Cell Physiol; 2008 Dec; 49(12):1867-78. PubMed ID: 18987067
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving astaxanthin production in Escherichia coli by co-utilizing CrtZ enzymes with different substrate preference.
    Zhang M; Gong Z; Tang J; Lu F; Li Q; Zhang X
    Microb Cell Fact; 2022 Apr; 21(1):71. PubMed ID: 35468798
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneous accumulation of astaxanthin and β-carotene in Chlamydomonas reinhardtii by the introduction of foreign β-carotene hydroxylase gene in response to high light stress.
    Huang K; Su Z; He M; Wu Y; Wang M
    Biotechnol Lett; 2022 Feb; 44(2):321-331. PubMed ID: 35119571
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of two beta-carotene ketolases, CrtO and CrtW, by complementation analysis in Escherichia coli.
    Choi SK; Harada H; Matsuda S; Misawa N
    Appl Microbiol Biotechnol; 2007 Jul; 75(6):1335-41. PubMed ID: 17415558
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Morphological and Metabolic Engineering of
    Liu M; Zhang J; Ye J; Qi Q; Hou J
    ACS Synth Biol; 2021 Dec; 10(12):3551-3560. PubMed ID: 34762415
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pathway Engineering for Beta-Carotene and Carotenoid Biosynthesis in Y. lipolytica.
    Pesantes-Munoz M; Ledesma-Amaro R
    Methods Mol Biol; 2021; 2307():191-204. PubMed ID: 33847991
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Directed Coevolution of β-Carotene Ketolase and Hydroxylase and Its Application in Temperature-Regulated Biosynthesis of Astaxanthin.
    Zhou P; Li M; Shen B; Yao Z; Bian Q; Ye L; Yu H
    J Agric Food Chem; 2019 Jan; 67(4):1072-1080. PubMed ID: 30606005
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mutational and functional analysis of the beta-carotene ketolase involved in the production of canthaxanthin and astaxanthin.
    Ye RW; Stead KJ; Yao H; He H
    Appl Environ Microbiol; 2006 Sep; 72(9):5829-37. PubMed ID: 16957201
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic engineering of Saccharomyces cerevisiae for astaxanthin production and oxidative stress tolerance.
    Ukibe K; Hashida K; Yoshida N; Takagi H
    Appl Environ Microbiol; 2009 Nov; 75(22):7205-11. PubMed ID: 19801484
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A modular pathway engineering strategy for the high-level production of β-ionone in Yarrowia lipolytica.
    Lu Y; Yang Q; Lin Z; Yang X
    Microb Cell Fact; 2020 Feb; 19(1):49. PubMed ID: 32103761
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.