These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 36092374)

  • 1. Cardiovascular waveforms - can we extract more from routine signals?
    Nandi M; Anton M; Lyle JV
    JRSM Cardiovasc Dis; 2022; 11():20480040221121438. PubMed ID: 36092374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracting new information from old waveforms: Symmetric projection attractor reconstruction: Where maths meets medicine.
    Nandi M; Aston PJ
    Exp Physiol; 2020 Sep; 105(9):1444-1451. PubMed ID: 32347611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deep learning approach for generating intracranial pressure waveforms from extracranial signals routinely measured in the intensive care unit.
    Nair SS; Guo A; Boen J; Aggarwal A; Chahal O; Tandon A; Patel M; Sankararaman S; Durr NJ; Azad TD; Pirracchio R; Stevens RD
    Comput Biol Med; 2024 Jul; 177():108677. PubMed ID: 38833800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An algorithm to detect dicrotic notch in arterial blood pressure and photoplethysmography waveforms using the iterative envelope mean method.
    Pal R; Rudas A; Kim S; Chiang JN; Barney A; Cannesson M
    Comput Methods Programs Biomed; 2024 Sep; 254():108283. PubMed ID: 38901273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-contact Quantification of Jugular Venous Pulse Waveforms from Skin Displacements.
    Lam Po Tang EJ; HajiRassouliha A; Nash MP; Nielsen PMF; Taberner AJ; Cakmak YO
    Sci Rep; 2018 Nov; 8(1):17236. PubMed ID: 30467407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signal quality measures for pulse oximetry through waveform morphology analysis.
    Sukor JA; Redmond SJ; Lovell NH
    Physiol Meas; 2011 Mar; 32(3):369-84. PubMed ID: 21330696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using time-frequency analysis of the photoplethysmographic waveform to detect the withdrawal of 900 mL of blood.
    Scully CG; Selvaraj N; Romberg FW; Wardhan R; Ryan J; Florian JP; Silverman DG; Shelley KH; Chon KH
    Anesth Analg; 2012 Jul; 115(1):74-81. PubMed ID: 22543068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An algorithm to detect dicrotic notch in arterial blood pressure and photoplethysmography waveforms using the iterative envelope mean method.
    Pal R; Rudas A; Kim S; Chiang JN; Braney A; Cannesson M
    medRxiv; 2024 Mar; ():. PubMed ID: 38496617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoplethysmography Fast Upstroke Time Intervals Can Be Useful Features for Cuff-Less Measurement of Blood Pressure Changes in Humans.
    Natarajan K; Block RC; Yavarimanesh M; Chandrasekhar A; Mestha LK; Inan OT; Hahn JO; Mukkamala R
    IEEE Trans Biomed Eng; 2022 Jan; 69(1):53-62. PubMed ID: 34097603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A method for automatic identification of reliable heart rates calculated from ECG and PPG waveforms.
    Yu C; Liu Z; McKenna T; Reisner AT; Reifman J
    J Am Med Inform Assoc; 2006; 13(3):309-20. PubMed ID: 16501184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noninvasive blood oxygen, heartbeat rate, and blood pressure parameter monitoring by photoplethysmography signals.
    Ku CJ; Wang Y; Chang CY; Wu MT; Dai ST; Liao LD
    Heliyon; 2022 Nov; 8(11):e11698. PubMed ID: 36458306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of arterial blood pressure waveforms from photoplethysmogram signals via fully convolutional neural networks.
    Cheng J; Xu Y; Song R; Liu Y; Li C; Chen X
    Comput Biol Med; 2021 Nov; 138():104877. PubMed ID: 34571436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From peripheral finger-derived pulse waveforms to aortic pressure waveform features: an application of a generalized transfer function.
    Cox JR; Tan I; Qasem A; Avolio AP; Butlin M
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diagnostic assessment of a deep learning system for detecting atrial fibrillation in pulse waveforms.
    Poh MZ; Poh YC; Chan PH; Wong CK; Pun L; Leung WW; Wong YF; Wong MM; Chu DW; Siu CW
    Heart; 2018 Dec; 104(23):1921-1928. PubMed ID: 29853485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atrial Fibrillation Classification with Smart Wearables Using Short-Term Heart Rate Variability and Deep Convolutional Neural Networks.
    Ramesh J; Solatidehkordi Z; Aburukba R; Sagahyroon A
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating and Visualizing the Contribution of ECG Characteristic Waveforms for PPG-Based Blood Pressure Estimation.
    Ma G; Chen Y; Zhu W; Zheng L; Tang H; Yu Y; Wang L
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of cerebral blood flow velocity during breath-hold challenge using artificial neural networks.
    Al-Abed MA; Al-Bashir AK; Al-Rawashdeh A; Alex RM; Zhang R; Watenpaugh DE; Behbehani K
    Comput Biol Med; 2019 Dec; 115():103508. PubMed ID: 31698237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cuff-Less Blood Pressure Prediction from ECG and PPG Signals Using Fourier Transformation and Amplitude Randomization Preprocessing for Context Aggregation Network Training.
    Treebupachatsakul T; Boosamalee A; Shinnakerdchoke S; Pechprasarn S; Thongpance N
    Biosensors (Basel); 2022 Mar; 12(3):. PubMed ID: 35323429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A signal processing tool for extracting features from arterial blood pressure and photoplethysmography waveforms.
    Pal R; Rudas A; Kim S; Chiang JN; Cannesson M
    medRxiv; 2024 Mar; ():. PubMed ID: 38559005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SPARE: A Spectral Peak Recovery Algorithm for PPG Signals Pulsewave Reconstruction in Multimodal Wearable Devices.
    Masinelli G; Dell'Agnola F; Valdés AA; Atienza D
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33924351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.