These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36092461)

  • 1. LassoNet: Neural Networks with Feature Sparsity.
    Lemhadri I; Ruan F; Tibshirani R
    Proc Mach Learn Res; 2021 Apr; 130():10-18. PubMed ID: 36092461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feature flow regularization: Improving structured sparsity in deep neural networks.
    Wu Y; Lan Y; Zhang L; Xiang Y
    Neural Netw; 2023 Apr; 161():598-613. PubMed ID: 36822145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LassoNet: Deep Lasso-Selection of 3D Point Clouds.
    Zhu-Tian C; Zeng W; Yang Z; Yu L; Fu CW; Qu H
    IEEE Trans Vis Comput Graph; 2020 Jan; 26(1):195-204. PubMed ID: 31425100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear Feature Selection Neural Network via Structured Sparse Regularization.
    Wang R; Bian J; Nie F; Li X
    IEEE Trans Neural Netw Learn Syst; 2023 Nov; 34(11):9493-9505. PubMed ID: 36395136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A universal deep learning approach for modeling the flow of patients under different severities.
    Jiang S; Chin KS; Tsui KL
    Comput Methods Programs Biomed; 2018 Feb; 154():191-203. PubMed ID: 29249343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boosted network classifiers for local feature selection.
    Hancock T; Mamitsuka H
    IEEE Trans Neural Netw Learn Syst; 2012 Nov; 23(11):1767-78. PubMed ID: 24808071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of Granger causality through Artificial Neural Networks: applications to physiological systems and chaotic electronic oscillators.
    Antonacci Y; Minati L; Faes L; Pernice R; Nollo G; Toppi J; Pietrabissa A; Astolfi L
    PeerJ Comput Sci; 2021; 7():e429. PubMed ID: 34084917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformed ℓ
    Ma R; Miao J; Niu L; Zhang P
    Neural Netw; 2019 Nov; 119():286-298. PubMed ID: 31499353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sparse Manifold-Regularized Neural Networks for Polarimetric SAR Terrain Classification.
    Liu H; Shang F; Yang S; Gong M; Zhu T; Jiao L
    IEEE Trans Neural Netw Learn Syst; 2020 Aug; 31(8):3007-3016. PubMed ID: 31536019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Greedy Projected Gradient-Newton Method for Sparse Logistic Regression.
    Wang R; Xiu N; Zhang C
    IEEE Trans Neural Netw Learn Syst; 2020 Feb; 31(2):527-538. PubMed ID: 30990444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A phase transition for finding needles in nonlinear haystacks with LASSO artificial neural networks.
    Ma X; Sardy S; Hengartner N; Bobenko N; Lin YT
    Stat Comput; 2022; 32(6):99. PubMed ID: 36299529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semisupervised Feature Learning by Deep Entropy-Sparsity Subspace Clustering.
    Wu S; Zheng WS
    IEEE Trans Neural Netw Learn Syst; 2022 Feb; 33(2):774-788. PubMed ID: 33493120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A sparsity-based stochastic pooling mechanism for deep convolutional neural networks.
    Song Z; Liu Y; Song R; Chen Z; Yang J; Zhang C; Jiang Q
    Neural Netw; 2018 Sep; 105():340-345. PubMed ID: 29929102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep-gKnock: Nonlinear group-feature selection with deep neural networks.
    Zhu G; Zhao T
    Neural Netw; 2021 Mar; 135():139-147. PubMed ID: 33385830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sparse deep neural networks on imaging genetics for schizophrenia case-control classification.
    Chen J; Li X; Calhoun VD; Turner JA; van Erp TGM; Wang L; Andreassen OA; Agartz I; Westlye LT; Jönsson E; Ford JM; Mathalon DH; Macciardi F; O'Leary DS; Liu J; Ji S
    Hum Brain Mapp; 2021 Jun; 42(8):2556-2568. PubMed ID: 33724588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network-based drug sensitivity prediction.
    Ahmed KT; Park S; Jiang Q; Yeu Y; Hwang T; Zhang W
    BMC Med Genomics; 2020 Dec; 13(Suppl 11):193. PubMed ID: 33371891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards Interpretable Deep Learning: A Feature Selection Framework for Prognostics and Health Management Using Deep Neural Networks.
    Figueroa Barraza J; López Droguett E; Martins MR
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SSGD: SPARSITY-PROMOTING STOCHASTIC GRADIENT DESCENT ALGORITHM FOR UNBIASED DNN PRUNING.
    Lee CH; Fedorov I; Rao BD; Garudadri H
    Proc IEEE Int Conf Acoust Speech Signal Process; 2020 May; 2020():5410-5414. PubMed ID: 33162834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linear embedding by joint Robust Discriminant Analysis and Inter-class Sparsity.
    Dornaika F; Khoder A
    Neural Netw; 2020 Jul; 127():141-159. PubMed ID: 32361379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diagnosing Autism Spectrum Disorder from Brain Resting-State Functional Connectivity Patterns Using a Deep Neural Network with a Novel Feature Selection Method.
    Guo X; Dominick KC; Minai AA; Li H; Erickson CA; Lu LJ
    Front Neurosci; 2017; 11():460. PubMed ID: 28871217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.