These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36092564)

  • 1. Role of Intrinsic Defects in Enhancing the Photoabsorption Capability of CuZn
    Jyothirmai MV; Thapa R
    ACS Omega; 2022 Sep; 7(35):31098-31105. PubMed ID: 36092564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trigonal Cu2-II-Sn-VI4 (II = Ba, Sr and VI = S, Se) quaternary compounds for earth-abundant photovoltaics.
    Hong F; Lin W; Meng W; Yan Y
    Phys Chem Chem Phys; 2016 Feb; 18(6):4828-34. PubMed ID: 26804024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers.
    Chen S; Walsh A; Gong XG; Wei SH
    Adv Mater; 2013 Mar; 25(11):1522-39. PubMed ID: 23401176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substitution of Ag for Cu in Cu
    Wu Y; Sui Y; He W; Zeng F; Wang Z; Wang F; Yao B; Yang L
    Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31947756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ag2ZnSn(S,Se)4: A highly promising absorber for thin film photovoltaics.
    Chagarov E; Sardashti K; Kummel AC; Lee YS; Haight R; Gershon TS
    J Chem Phys; 2016 Mar; 144(10):104704. PubMed ID: 26979701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New Earth-Abundant Thin Film Solar Cells Based on Chalcogenides.
    Le Donne A; Trifiletti V; Binetti S
    Front Chem; 2019; 7():297. PubMed ID: 31114786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic structure, defect properties, and optimization of the band gap of the earth-abundant and low-toxicity photovoltaic absorber Cu
    Huang D; Lin C; Xue Y; Chen S; Zhao YJ; Persson C
    Phys Chem Chem Phys; 2022 Oct; 24(41):25258-25269. PubMed ID: 36222461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emerging Chalcogenide Thin Films for Solar Energy Harvesting Devices.
    Hadke S; Huang M; Chen C; Tay YF; Chen S; Tang J; Wong L
    Chem Rev; 2022 Jun; 122(11):10170-10265. PubMed ID: 34878268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multinary copper-based chalcogenide nanocrystal systems from the perspective of device applications.
    Palchoudhury S; Ramasamy K; Gupta A
    Nanoscale Adv; 2020 Aug; 2(8):3069-3082. PubMed ID: 36134292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy band alignment in chalcogenide thin film solar cells from photoelectron spectroscopy.
    Klein A
    J Phys Condens Matter; 2015 Apr; 27(13):134201. PubMed ID: 25767081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of pnictides for photovoltaic applications.
    Kumar J; Sai Gautam G
    Phys Chem Chem Phys; 2023 Mar; 25(13):9626-9635. PubMed ID: 36943099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disorder induced band gap lowering in kesterite type Cu
    Fritsch D; Schorr S
    J Phys Condens Matter; 2024 Jun; 36(37):. PubMed ID: 38821076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong interlayer coupling and unusual antisite defect-mediated p-type conductivity in GeP
    Chen G; Meng W; Guan X; Zhao P; Jia S; Zheng H; Zhao D; Wang J
    Nanoscale; 2023 May; 15(20):9139-9147. PubMed ID: 37144280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic and Thermal Properties of the Cation Substitution-Derived Quaternary Chalcogenide CuInSnSe
    Ojo OP; Ma L; Gunatilleke WDCB; May AF; Woods LM; Nolas GS
    Inorg Chem; 2023 Oct; 62(39):16114-16121. PubMed ID: 37729541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An investigation of Na-related defects in Cu
    Han M; Zhang X; Zeng Z
    Phys Chem Chem Phys; 2017 Jul; 19(27):17799-17804. PubMed ID: 28657104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-principles insights into the electronic structure, optical and band alignment properties of earth-abundant Cu
    Dzade NY
    Sci Rep; 2021 Feb; 11(1):4755. PubMed ID: 33637815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Identification of Antisite Cation Intermixing and Correlation with Electronic Conduction in CuBi
    Jung HJ; Lim Y; Choi BU; Bae HB; Jung W; Ryu S; Oh J; Chung SY
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43720-43727. PubMed ID: 32877165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic properties of the Sn
    Kelaidis N; Bousiadi S; Zervos M; Chroneos A; Lathiotakis NN
    Sci Rep; 2020 Oct; 10(1):16828. PubMed ID: 33033273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth and Characterization of Cu
    Trifiletti V; Tseberlidis G; Colombo M; Spinardi A; Luong S; Danilson M; Grossberg M; Fenwick O; Binetti S
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32213828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation energies and electronic structure of intrinsic vacancy defects and oxygen vacancy clustering in BaZrO3.
    Muhammad Alay-E-Abbas S; Nazir S; Shaukat A
    Phys Chem Chem Phys; 2016 Aug; 18(34):23737-45. PubMed ID: 27514742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.