These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36092609)

  • 61. Insights into the degradation mechanisms and pathways of cephalexin during homogeneous and heterogeneous photo-Fenton processes.
    Gou Y; Peng L; Xu H; Li S; Liu C; Wu X; Song S; Yang C; Song K; Xu Y
    Chemosphere; 2021 Dec; 285():131417. PubMed ID: 34246101
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Degradation of naphthalene with magnetic bio-char activate hydrogen peroxide: Synergism of bio-char and Fe-Mn binary oxides.
    Li L; Lai C; Huang F; Cheng M; Zeng G; Huang D; Li B; Liu S; Zhang M; Qin L; Li M; He J; Zhang Y; Chen L
    Water Res; 2019 Sep; 160():238-248. PubMed ID: 31152949
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Enhanced adsorption properties of organic ZnCr-LDH synthesized by soft template method for anionic dyes.
    Lin J; Zhang Y; Zhang Q; Shang J; Deng F
    Environ Sci Pollut Res Int; 2021 Sep; 28(35):48236-48252. PubMed ID: 33905058
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Removal of Paracetamol Using Effective Advanced Oxidation Processes.
    Audino F; Toro Santamaria JM; Del Valle Mendoza LJ; Graells M; Pérez-Moya M
    Int J Environ Res Public Health; 2019 Feb; 16(3):. PubMed ID: 30754732
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Oxidation of tetracycline and oxytetracycline for the photo-Fenton process: Their transformation products and toxicity assessment.
    Han CH; Park HD; Kim SB; Yargeau V; Choi JW; Lee SH; Park JA
    Water Res; 2020 Apr; 172():115514. PubMed ID: 31986402
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Magnetite/mesocellular carbon foam as a magnetically recoverable fenton catalyst for removal of phenol and arsenic.
    Chun J; Lee H; Lee SH; Hong SW; Lee J; Lee C; Lee J
    Chemosphere; 2012 Nov; 89(10):1230-7. PubMed ID: 22884493
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Effect of temperature on Imidacloprid oxidation by homogeneous photo-Fenton processes.
    Zaror C; Segura C; Mansilla H; Mondaca MA; González P
    Water Sci Technol; 2008; 58(1):259-65. PubMed ID: 18653963
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A green method to synthesize flowerlike Fe(OH)
    Zhao X; Su Y; Li S; Bi Y; Han X
    J Environ Sci (China); 2018 Nov; 73():47-57. PubMed ID: 30290871
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Photochemical degradation and mineralization of 4-chlorophenol.
    Catalkaya EC; Bali U; Sengül F
    Environ Sci Pollut Res Int; 2003; 10(2):113-20. PubMed ID: 12729044
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Removal of Congo red dyes from aqueous solutions by porous γ-alumina nanoshells.
    Al-Salihi S; Jasim AM; Fidalgo MM; Xing Y
    Chemosphere; 2022 Jan; 286(Pt 2):131769. PubMed ID: 34365171
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Adsorptive potential of iron oxide based nanocomposite for the sequestration of Congo red from aqueous solution.
    Sarojini G; Babu SV; Rajasimman M
    Chemosphere; 2022 Jan; 287(Pt 4):132371. PubMed ID: 34597648
    [TBL] [Abstract][Full Text] [Related]  

  • 72. FeCl
    Zeng S; Kan E
    Chemosphere; 2022 Nov; 306():135554. PubMed ID: 35780988
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Potential of nanocomposites of zero valent copper and magnetite with Eleocharis dulcis biochar for packed column and batch scale removal of Congo red dye.
    Imran M; Natasha ; Murtaza B; Ansar S; Shah NS; Haq Khan ZU; Ali S; Boczkaj G; Hafeez F; Ali S; Rizwan M
    Environ Pollut; 2022 Jul; 305():119291. PubMed ID: 35427680
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Enhancement of the anionic dye adsorption capacity of clinoptilolite by Fe(3+)-grafting.
    Akgül M
    J Hazard Mater; 2014 Feb; 267():1-8. PubMed ID: 24413045
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Selective Fenton-like oxidation of methylene blue on modified Fe-zeolites prepared via molecular imprinting technique.
    Zhang Y; Shang J; Song Y; Rong C; Wang Y; Huang W; Yu K
    Water Sci Technol; 2017 Feb; 75(3-4):659-669. PubMed ID: 28192360
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Adsorption of C.I. Reactive Red 228 and Congo Red dye from aqueous solution by amino-functionalized Fe3O4 particles: kinetics, equilibrium, and thermodynamics.
    Yan TG; Wang LJ
    Water Sci Technol; 2014; 69(3):612-21. PubMed ID: 24552735
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Kinetic study for phenol degradation by ZVI-assisted Fenton reaction and related iron corrosion investigated by X-ray absorption spectroscopy.
    Yoon IH; Yoo G; Hong HJ; Kim J; Kim MG; Choi WK; Yang JW
    Chemosphere; 2016 Feb; 145():409-15. PubMed ID: 26692518
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Using iron-loaded sepiolite obtained by adsorption as a catalyst in the electro-Fenton oxidation of Reactive Black 5.
    Iglesias O; Fernández de Dios MA; Pazos M; Sanromán MA
    Environ Sci Pollut Res Int; 2013 Sep; 20(9):5983-93. PubMed ID: 23516035
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Steric, Synergetic, Energetic Studies on the Impact of the Type of the Hybridized Polymers (Chitosan and β-Cyclodextrin) on the Adsorption Properties of Zeolite-A for Congo Red Dye.
    Farhan AM; Abu-Taweel GM; Sayed IR; Rudayni HA; Allam AA; Al Zoubi W; Abukhadra MR
    ACS Omega; 2024 May; 9(19):21204-21220. PubMed ID: 38764688
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effective retention of cesium ions from aqueous environment using morphologically modified kaolinite nanostructures: experimental and theoretical studies.
    Ahmed AM; Nasser N; Rafea MA; Abukhadra MR
    RSC Adv; 2024 Jan; 14(5):3104-3121. PubMed ID: 38249663
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.