These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 36092615)
1. Scalable and Tunable Diamond Nanostructuring Process for Nanoscale NMR Applications. Gierse M; Marshall A; Qureshi MU; Scharpf J; Parker AJ; Hausmann BJM; Walther P; Bleszynski Jayich AC; Jelezko F; Neumann P; Schwartz I ACS Omega; 2022 Sep; 7(35):31544-31550. PubMed ID: 36092615 [TBL] [Abstract][Full Text] [Related]
2. Optically Coherent Nitrogen-Vacancy Centers in Micrometer-Thin Etched Diamond Membranes. Ruf M; IJspeert M; van Dam S; de Jong N; van den Berg H; Evers G; Hanson R Nano Lett; 2019 Jun; 19(6):3987-3992. PubMed ID: 31136192 [TBL] [Abstract][Full Text] [Related]
8. Scalable fabrication of high purity diamond nanocrystals with long-spin-coherence nitrogen vacancy centers. Trusheim ME; Li L; Laraoui A; Chen EH; Bakhru H; Schröder T; Gaathon O; Meriles CA; Englund D Nano Lett; 2014 Jan; 14(1):32-6. PubMed ID: 24199716 [TBL] [Abstract][Full Text] [Related]
9. Using Metal-Organic Frameworks to Confine Liquid Samples for Nanoscale NV-NMR. Liu KS; Ma X; Rizzato R; Semrau AL; Henning A; Sharp ID; Fischer RA; Bucher DB Nano Lett; 2022 Dec; 22(24):9876-9882. PubMed ID: 36480706 [TBL] [Abstract][Full Text] [Related]
10. Neuronal growth on high-aspect-ratio diamond nanopillar arrays for biosensing applications. Losero E; Jagannath S; Pezzoli M; Goblot V; Babashah H; Lashuel HA; Galland C; Quack N Sci Rep; 2023 Apr; 13(1):5909. PubMed ID: 37041255 [TBL] [Abstract][Full Text] [Related]
11. Enhanced Widefield Quantum Sensing with Nitrogen-Vacancy Ensembles Using Diamond Nanopillar Arrays. McCloskey DJ; Dontschuk N; Broadway DA; Nadarajah A; Stacey A; Tetienne JP; Hollenberg LCL; Prawer S; Simpson DA ACS Appl Mater Interfaces; 2020 Mar; 12(11):13421-13427. PubMed ID: 32100531 [TBL] [Abstract][Full Text] [Related]
12. Diamond surface functionalization via visible light-driven C-H activation for nanoscale quantum sensing. Rodgers LVH; Nguyen ST; Cox JH; Zervas K; Yuan Z; Sangtawesin S; Stacey A; Jaye C; Weiland C; Pershin A; Gali A; Thomsen L; Meynell SA; Hughes LB; Jayich ACB; Gui X; Cava RJ; Knowles RR; de Leon NP Proc Natl Acad Sci U S A; 2024 Mar; 121(11):e2316032121. PubMed ID: 38451945 [TBL] [Abstract][Full Text] [Related]
13. Toward Quantitative Bio-sensing with Nitrogen-Vacancy Center in Diamond. Zhang T; Pramanik G; Zhang K; Gulka M; Wang L; Jing J; Xu F; Li Z; Wei Q; Cigler P; Chu Z ACS Sens; 2021 Jun; 6(6):2077-2107. PubMed ID: 34038091 [TBL] [Abstract][Full Text] [Related]
14. Impact of Surface Functionalization on the Quantum Coherence of Nitrogen-Vacancy Centers in Nanodiamonds. Ryan RG; Stacey A; O'Donnell KM; Ohshima T; Johnson BC; Hollenberg LCL; Mulvaney P; Simpson DA ACS Appl Mater Interfaces; 2018 Apr; 10(15):13143-13149. PubMed ID: 29557161 [TBL] [Abstract][Full Text] [Related]
15. Relaxometry with Nitrogen Vacancy (NV) Centers in Diamond. Mzyk A; Sigaeva A; Schirhagl R Acc Chem Res; 2022 Dec; 55(24):3572-3580. PubMed ID: 36475573 [TBL] [Abstract][Full Text] [Related]
16. Nanothermometry with Enhanced Sensitivity and Enlarged Working Range Using Diamond Sensors. Liu GQ; Liu RB; Li Q Acc Chem Res; 2023 Jan; 56(2):95-105. PubMed ID: 36594628 [TBL] [Abstract][Full Text] [Related]