These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 36092998)
1. Enhancing the energy storage performances of metal-organic frameworks by controlling microstructure. Gittins JW; Balhatchet CJ; Fairclough SM; Forse AC Chem Sci; 2022 Aug; 13(32):9210-9219. PubMed ID: 36092998 [TBL] [Abstract][Full Text] [Related]
2. Understanding Electrolyte Ion Size Effects on the Performance of Conducting Metal-Organic Framework Supercapacitors. Gittins JW; Ge K; Balhatchet CJ; Taberna PL; Simon P; Forse AC J Am Chem Soc; 2024 May; 146(18):12473-12484. PubMed ID: 38716517 [TBL] [Abstract][Full Text] [Related]
3. Oxidative control over the morphology of Cu Snook KM; Zasada LB; Chehada D; Xiao DJ Chem Sci; 2022 Sep; 13(35):10472-10478. PubMed ID: 36277645 [TBL] [Abstract][Full Text] [Related]
4. Overcoming Diffusion Limitation of Faradaic Processes: Property-Performance Relationships of 2D Conductive Metal-Organic Framework Cu Wrogemann JM; Lüther MJ; Bärmann P; Lounasvuori M; Javed A; Tiemann M; Golnak R; Xiao J; Petit T; Placke T; Winter M Angew Chem Int Ed Engl; 2023 Jun; 62(26):e202303111. PubMed ID: 37069123 [TBL] [Abstract][Full Text] [Related]
5. Negative electrodes for supercapacitors with good performance using conductive bismuth-catecholate metal-organic frameworks. Chen S; Zhang H; Li X; Liu Y; Zhang M; Gao X; Chang X; Pu X; He C Dalton Trans; 2023 Apr; 52(15):4826-4834. PubMed ID: 36939173 [TBL] [Abstract][Full Text] [Related]
6. Catalytic Metal Nanoparticles Embedded in Conductive Metal-Organic Frameworks for Chemiresistors: Highly Active and Conductive Porous Materials. Koo WT; Kim SJ; Jang JS; Kim DH; Kim ID Adv Sci (Weinh); 2019 Nov; 6(21):1900250. PubMed ID: 31728270 [TBL] [Abstract][Full Text] [Related]
7. The Realization of Uniform Growth of Conductive MOFs on LDHs and Their High Performance in Supercapacitors. Liu L; Lu J; Zhang Y; Pang H; Zhu R Chem Asian J; 2024 Jan; 19(1):e202300819. PubMed ID: 37973612 [TBL] [Abstract][Full Text] [Related]
8. When Conductive MOFs Meet MnO Duan H; Zhao Z; Lu J; Hu W; Zhang Y; Li S; Zhang M; Zhu R; Pang H ACS Appl Mater Interfaces; 2021 Jul; 13(28):33083-33090. PubMed ID: 34235934 [TBL] [Abstract][Full Text] [Related]
9. Orientation Control of a Two-Dimensional Conductive Metal-Organic Framework Thin Film by a Pyridine Vapor-Assisted Dry Process. Chon S; Nakayama R; Iwamoto S; Kobayashi S; Shimizu R; Hitosugi T ACS Appl Mater Interfaces; 2023 Dec; 15(48):56057-56063. PubMed ID: 38009945 [TBL] [Abstract][Full Text] [Related]
10. Conductive Metal-Organic Frameworks for Supercapacitors. Niu L; Wu T; Chen M; Yang L; Yang J; Wang Z; Kornyshev AA; Jiang H; Bi S; Feng G Adv Mater; 2022 Dec; 34(52):e2200999. PubMed ID: 35358341 [TBL] [Abstract][Full Text] [Related]
11. Insights into the electric double-layer capacitance of two-dimensional electrically conductive metal-organic frameworks. Gittins JW; Balhatchet CJ; Chen Y; Liu C; Madden DG; Britto S; Golomb MJ; Walsh A; Fairen-Jimenez D; Dutton SE; Forse AC J Mater Chem A Mater; 2021 Jul; 9(29):16006-16015. PubMed ID: 34354834 [TBL] [Abstract][Full Text] [Related]
12. Recent Progress of Advanced Conductive Metal-Organic Frameworks: Precise Synthesis, Electrochemical Energy Storage Applications, and Future Challenges. Xu G; Zhu C; Gao G Small; 2022 Nov; 18(44):e2203140. PubMed ID: 36050887 [TBL] [Abstract][Full Text] [Related]
13. Three-Dimensional Networked Metal-Organic Frameworks with Conductive Polypyrrole Tubes for Flexible Supercapacitors. Xu X; Tang J; Qian H; Hou S; Bando Y; Hossain MSA; Pan L; Yamauchi Y ACS Appl Mater Interfaces; 2017 Nov; 9(44):38737-38744. PubMed ID: 29082737 [TBL] [Abstract][Full Text] [Related]
14. On-Demand Tunable Electrical Conductance Anisotropy in a MOF-Polymer Composite. Hong T; Lee C; Bak Y; Park G; Lee H; Kang S; Bae TH; Yoon DK; Park JG Small; 2024 May; 20(18):e2309469. PubMed ID: 38174621 [TBL] [Abstract][Full Text] [Related]
15. A Collaboration for Exploring Fundamental Property-Performance Relationships for Electrochemical Energy Storage. Angew Chem Int Ed Engl; 2023 Oct; 62(40):e202308841. PubMed ID: 37505429 [TBL] [Abstract][Full Text] [Related]
16. 2D Semiconducting Metal-Organic Framework Thin Films for Organic Spin Valves. Song X; Wang X; Li Y; Zheng C; Zhang B; Di CA; Li F; Jin C; Mi W; Chen L; Hu W Angew Chem Int Ed Engl; 2020 Jan; 59(3):1118-1123. PubMed ID: 31659842 [TBL] [Abstract][Full Text] [Related]
17. Layer-by-Layer Assembled Conductive Metal-Organic Framework Nanofilms for Room-Temperature Chemiresistive Sensing. Yao MS; Lv XJ; Fu ZH; Li WH; Deng WH; Wu GD; Xu G Angew Chem Int Ed Engl; 2017 Dec; 56(52):16510-16514. PubMed ID: 29071780 [TBL] [Abstract][Full Text] [Related]
18. Microscopic Origin of Electrochemical Capacitance in Metal-Organic Frameworks. Shin SJ; Gittins JW; Golomb MJ; Forse AC; Walsh A J Am Chem Soc; 2023 Jul; 145(26):14529-14538. PubMed ID: 37341453 [TBL] [Abstract][Full Text] [Related]
20. Directional Growth of Conductive Metal-Organic Framework Nanoarrays along [001] on Metal Hydroxides for Aqueous Asymmetric Supercapacitors. Lu J; Duan H; Zhang Y; Zhang G; Chen Z; Song Y; Zhu R; Pang H ACS Appl Mater Interfaces; 2022 Jun; 14(22):25878-25885. PubMed ID: 35618261 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]