BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36093038)

  • 41. A proposal for incorporating health level seven (HL7) vocabulary in the UMLS Metathesaurus.
    Huff SM; Bidgood WD; Cimino JJ; Hammond WE
    Proc AMIA Symp; 1998; ():800-4. PubMed ID: 9929329
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Concepts and synonymy in the UMLS Metathesaurus.
    Merrill GH
    J Biomed Discov Collab; 2009 Oct; 4():7. PubMed ID: 19838995
    [TBL] [Abstract][Full Text] [Related]  

  • 43. UMLS-based data augmentation for natural language processing of clinical research literature.
    Kang T; Perotte A; Tang Y; Ta C; Weng C
    J Am Med Inform Assoc; 2021 Mar; 28(4):812-823. PubMed ID: 33367705
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Summarization of biomedical articles using domain-specific word embeddings and graph ranking.
    Moradi M; Dashti M; Samwald M
    J Biomed Inform; 2020 Jul; 107():103452. PubMed ID: 32439479
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identifying synonymy between relational phrases using word embeddings.
    Nguyen NT; Miwa M; Tsuruoka Y; Tojo S
    J Biomed Inform; 2015 Aug; 56():94-102. PubMed ID: 26004792
    [TBL] [Abstract][Full Text] [Related]  

  • 46. BERT-based Ranking for Biomedical Entity Normalization.
    Ji Z; Wei Q; Xu H
    AMIA Jt Summits Transl Sci Proc; 2020; 2020():269-277. PubMed ID: 32477646
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Text mining-based word representations for biomedical data analysis and protein-protein interaction networks in machine learning tasks.
    Alachram H; Chereda H; Beißbarth T; Wingender E; Stegmaier P
    PLoS One; 2021; 16(10):e0258623. PubMed ID: 34653224
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Medical concept normalization in French using multilingual terminologies and contextual embeddings.
    Wajsbürt P; Sarfati A; Tannier X
    J Biomed Inform; 2021 Feb; 114():103684. PubMed ID: 33450387
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tracking meaning over time in the UMLS Metathesaurus.
    Powell T; Srinivasan S; Nelson SJ; Hole WT; Roth L; Olenichev V
    Proc AMIA Symp; 2002; ():622-6. PubMed ID: 12463898
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Can Race-sensitive Biomedical Embeddings Improve Healthcare Predictive Models?
    Liu H; Moustafa-Fahmy N; Ta C; Weng C
    AMIA Jt Summits Transl Sci Proc; 2023; 2023():388-397. PubMed ID: 37350869
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development and evaluation of novel ophthalmology domain-specific neural word embeddings to predict visual prognosis.
    Wang S; Tseng B; Hernandez-Boussard T
    Int J Med Inform; 2021 Jun; 150():104464. PubMed ID: 33892445
    [TBL] [Abstract][Full Text] [Related]  

  • 52. GT-Finder: Classify the family of glucose transporters with pre-trained BERT language models.
    Ali Shah SM; Taju SW; Ho QT; Nguyen TT; Ou YY
    Comput Biol Med; 2021 Apr; 131():104259. PubMed ID: 33581474
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program.
    Aronson AR
    Proc AMIA Symp; 2001; ():17-21. PubMed ID: 11825149
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Integrating SNOMED CT into the UMLS: an exploration of different views of synonymy and quality of editing.
    Fung KW; Hole WT; Nelson SJ; Srinivasan S; Powell T; Roth L
    J Am Med Inform Assoc; 2005; 12(4):486-94. PubMed ID: 15802483
    [TBL] [Abstract][Full Text] [Related]  

  • 55. UMLS mapping and Word embeddings for ICD code assignment using the MIMIC-III intensive care database.
    Schafer H; Friedrich CM
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6089-6092. PubMed ID: 31947234
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An automated approach to mapping external terminologies to the UMLS.
    Taboada M; Lalín R; Martínez D
    IEEE Trans Biomed Eng; 2009 Jun; 56(6):1598-605. PubMed ID: 19272981
    [TBL] [Abstract][Full Text] [Related]  

  • 57. deepBioWSD: effective deep neural word sense disambiguation of biomedical text data.
    Pesaranghader A; Matwin S; Sokolova M; Pesaranghader A
    J Am Med Inform Assoc; 2019 May; 26(5):438-446. PubMed ID: 30811548
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Meta-1.2 engine: a refined strategy for linking biomedical vocabularies.
    Sperzel WD; Tuttle MS; Olson NE; Erlbaum MS; Saurez-Munist O; Sherertz DD; Fuller LF
    Proc Annu Symp Comput Appl Med Care; 1992; ():304-8. PubMed ID: 1482887
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multi-Ontology Refined Embeddings (MORE): A hybrid multi-ontology and corpus-based semantic representation model for biomedical concepts.
    Jiang S; Wu W; Tomita N; Ganoe C; Hassanpour S
    J Biomed Inform; 2020 Nov; 111():103581. PubMed ID: 33010425
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lexicon Development for COVID-19-related Concepts Using Open-source Word Embedding Sources: An Intrinsic and Extrinsic Evaluation.
    Parikh S; Davoudi A; Yu S; Giraldo C; Schriver E; Mowery D
    JMIR Med Inform; 2021 Feb; 9(2):e21679. PubMed ID: 33544689
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.