These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 36093056)
1. A performance comparison between GaInP-on-Si and GaAs-on-Si 3-terminal tandem solar cells. VanSant KT; Warren EL; Geisz JF; Klein TR; Johnston S; McMahon WE; Schulte-Huxel H; Rienäcker M; Peibst R; Tamboli AC iScience; 2022 Sep; 25(9):104950. PubMed ID: 36093056 [TBL] [Abstract][Full Text] [Related]
2. Performance comparison of III-V//Si and III-V//InGaAs multi-junction solar cells fabricated by the combination of mechanical stacking and wire bonding. Kao YC; Chou HM; Hsu SC; Lin A; Lin CC; Shih ZH; Chang CL; Hong HF; Horng RH Sci Rep; 2019 Mar; 9(1):4308. PubMed ID: 30867491 [TBL] [Abstract][Full Text] [Related]
3. Structural dependences of localization and recombination of photogenerated carriers in the top GaInP Subcells of GaInP/GaAs double-junction tandem solar cells. Deng Z; Ning J; Su Z; Xu S; Xing Z; Wang R; Lu S; Dong J; Zhang B; Yang H ACS Appl Mater Interfaces; 2015 Jan; 7(1):690-5. PubMed ID: 25479245 [TBL] [Abstract][Full Text] [Related]
4. Tandem Solar Cells Using GaAs Nanowires on Si: Design, Fabrication, and Observation of Voltage Addition. Yao M; Cong S; Arab S; Huang N; Povinelli ML; Cronin SB; Dapkus PD; Zhou C Nano Lett; 2015 Nov; 15(11):7217-24. PubMed ID: 26502060 [TBL] [Abstract][Full Text] [Related]
5. The realistic energy yield potential of GaAs-on-Si tandem solar cells: a theoretical case study. Liu H; Ren Z; Liu Z; Aberle AG; Buonassisi T; Peters IM Opt Express; 2015 Apr; 23(7):A382-90. PubMed ID: 25968803 [TBL] [Abstract][Full Text] [Related]
6. Comparing optical performance of a wide range of perovskite/silicon tandem architectures under real-world conditions. Singh M; Santbergen R; Syifai I; Weeber A; Zeman M; Isabella O Nanophotonics; 2020 Jun; 10(8):2043-2057. PubMed ID: 36406046 [TBL] [Abstract][Full Text] [Related]
7. Application of polydimethylsiloxane surface texturing on III-V//Si tandem achieving more than 2 % absolute efficiency improvement. Yi C; Ma FJ; Mizuno H; Makita K; Sugaya T; Takato H; Mehrvarz H; Bremner S; Ho-Baillie A Opt Express; 2020 Feb; 28(3):3895-3904. PubMed ID: 32122050 [TBL] [Abstract][Full Text] [Related]
8. The Intermediate Connection of Subcells in Si-based Tandem Solar Cells. Zhang P; Li C; He M; Liu Z; Hao X Small Methods; 2024 Feb; 8(2):e2300432. PubMed ID: 37530212 [TBL] [Abstract][Full Text] [Related]
9. Data on the design optimization, indoor characterization and outdoor testing of GaAs/Bifacial Si heterojunction four-terminal photovoltaic systems. Scuto A; Corso R; Leonardi M; Milazzo RG; Privitera SMS; Colletti C; Foti M; Bizzarri F; Gerardi C; Lombardo S Data Brief; 2022 Dec; 45():108609. PubMed ID: 36425958 [TBL] [Abstract][Full Text] [Related]
11. GaAs/GaInP nanowire solar cell on Si with state-of-the-art Tong C; Delamarre A; De Lépinau R; Scaccabarozzi A; Oehler F; Harmand JC; Collin S; Cattoni A Nanoscale; 2022 Sep; 14(35):12722-12735. PubMed ID: 35997103 [TBL] [Abstract][Full Text] [Related]
12. Theoretical performance of multi-junction solar cells combining III-V and Si materials. Mathews I; O'Mahony D; Corbett B; Morrison AP Opt Express; 2012 Sep; 20 Suppl 5():A754-64. PubMed ID: 23037542 [TBL] [Abstract][Full Text] [Related]
13. Integration of Si Heterojunction Solar Cells with III-V Solar Cells by the Pd Nanoparticle Array-Mediated "Smart Stack" Approach. Mizuno H; Makita K; Sai H; Mochizuki T; Matsui T; Takato H; Müller R; Lackner D; Dimroth F; Sugaya T ACS Appl Mater Interfaces; 2022 Mar; 14(9):11322-11329. PubMed ID: 35119838 [TBL] [Abstract][Full Text] [Related]
14. Numerical simulations of the current-matching effect and operation mechanisms on the performance of InGaN/Si tandem cells. Feng SW; Lai CM; Tsai CY; Tu LW Nanoscale Res Lett; 2014; 9(1):652. PubMed ID: 25520599 [TBL] [Abstract][Full Text] [Related]
15. Comprehensive device simulation of 23.36% efficient two-terminal perovskite-PbS CQD tandem solar cell for low-cost applications. Madan J; Singh K; Pandey R Sci Rep; 2021 Oct; 11(1):19829. PubMed ID: 34615903 [TBL] [Abstract][Full Text] [Related]
16. Electrical analysis of c-Si/CGSe monolithic tandem solar cells by using a cell-selective light absorption scheme. Jeong AR; Choi SB; Kim WM; Park JK; Choi J; Kim I; Jeong JH Sci Rep; 2017 Nov; 7(1):15723. PubMed ID: 29146956 [TBL] [Abstract][Full Text] [Related]
17. Optical Performance Assessment of Nanostructured Alumina Multilayer Antireflective Coatings Used in III-V Multijunction Solar Cells. Reuna J; Hietalahti A; Aho A; Isoaho R; Aho T; Vuorinen M; Tukiainen A; Anttola E; Guina M ACS Appl Energy Mater; 2022 May; 5(5):5804-5810. PubMed ID: 35647495 [TBL] [Abstract][Full Text] [Related]
18. Nanopatterned Back-Reflector with Engineered Near-Field/Far-Field Light Scattering for Enhanced Light Trapping in Silicon-Based Multijunction Solar Cells. Cordaro A; Müller R; Tabernig SW; Tucher N; Schygulla P; Höhn O; Bläsi B; Polman A ACS Photonics; 2023 Nov; 10(11):4061-4070. PubMed ID: 38027248 [TBL] [Abstract][Full Text] [Related]
19. Light Management Enhancement for Four-Terminal Perovskite-Silicon Tandem Solar Cells: The Impact of the Optical Properties and Thickness of the Spacer Layer between Sub-Cells. Hajjiah A; Parmouneh F; Hadipour A; Jaysankar M; Aernouts T Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30562986 [TBL] [Abstract][Full Text] [Related]
20. Investigations aimed at producing 33% efficient perovskite-silicon tandem solar cells through device simulations. Shrivastav N; Madan J; Pandey R; Shalan AE RSC Adv; 2021 Nov; 11(59):37366-37374. PubMed ID: 35496422 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]