These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 3609307)
1. Kinetic measurements of electron transfer in coupled chromatophores from photosynthetic bacteria. A method of correction for the electrochromic effects. Venturoli G; Virgili M; Melandri BA; Crofts AR FEBS Lett; 1987 Jul; 219(2):477-84. PubMed ID: 3609307 [TBL] [Abstract][Full Text] [Related]
2. Generation of membrane potential during photosynthetic electron flow in chromatophores from Rhodopseudomonas capsulata. Packham NK; Greenrod JA; Jackson JB Biochim Biophys Acta; 1980 Aug; 592(1):130-42. PubMed ID: 7397136 [TBL] [Abstract][Full Text] [Related]
3. Photosynthetic control and estimation of the optimal ATP: electron stoichiometry during flash activation of chromatophores from Rhodopseudomonas capsulata. Jackson JB; Venturoli G; Baccarini-Melandri A; Melandri BA Biochim Biophys Acta; 1981 Jun; 636(1):1-8. PubMed ID: 7284340 [TBL] [Abstract][Full Text] [Related]
4. A kinetic completion of the cyclic photosynthetic electron pathway of Rhodopseudomonas sphaeroides: cytochrome b-cytochrome c2 oxidation-reduction. Prince RC; Dutton PL Biochim Biophys Acta; 1975 Jun; 387(3):609-13. PubMed ID: 166671 [TBL] [Abstract][Full Text] [Related]
5. In situ characterisation of photosynthetic electron transport in Rhodopseudomonas capsulata. Evans EH; Crofts AR Biochim Biophys Acta; 1974 Jul; 357(1):89-102. PubMed ID: 4370093 [No Abstract] [Full Text] [Related]
6. Electrochromic absorbance changes of photosynthetic pigments in Rhodopseudomonas sphaeroides. I. Stimulation by secondary electron transport at low temperature. de Grooth BG; Amesz J Biochim Biophys Acta; 1977 Nov; 462(2):237-46. PubMed ID: 588564 [TBL] [Abstract][Full Text] [Related]
7. The kinetic and redox potentiometric resolution of the carotenoid shifts in Rhodopseudomonas spheroides chromatophores: their relationship to electric field alterations in electron transport and energy coupling. Jackson JB; Dutton PL Biochim Biophys Acta; 1973 Oct; 325(1):102-13. PubMed ID: 4358810 [No Abstract] [Full Text] [Related]
8. The mechanism of reduction of the ubiquinone pool in photosynthetic bacteria at different redox potentials. de Grooth BG; van Grondelle R; Romijn JC; Pulles MP Biochim Biophys Acta; 1978 Sep; 503(3):480-90. PubMed ID: 99172 [TBL] [Abstract][Full Text] [Related]
9. Resolved difference spectra of redox centers involved in photosynthetic electron flow in Rhodopseudomonas capsulata and Rhodopseudomonas sphaeroides. Bowyer JR; Meinhardt SW; Tierney GV; Crofts AR Biochim Biophys Acta; 1981 Mar; 635(1):167-86. PubMed ID: 6260162 [TBL] [Abstract][Full Text] [Related]
10. Kinetics of the c-cytochromes in chromatophores from Rhodopseudomonas sphaeroides as a function of the concentration of cytochrome c2. Influence of this concentration on the oscillation of the secondary acceptor of the reaction centers QB. Snozzi M; Crofts AR Biochim Biophys Acta; 1985 Sep; 809(2):260-70. PubMed ID: 2994721 [TBL] [Abstract][Full Text] [Related]
11. Demonstration of a collisional interaction of ubiquinol with the ubiquinol-cytochrome c2 oxidoreductase complex in chromatophores from Rhodobacter sphaeroides. Venturoli G; Fernández-Velasco JG; Crofts AR; Melandri BA Biochim Biophys Acta; 1986 Oct; 851(3):340-52. PubMed ID: 3019393 [TBL] [Abstract][Full Text] [Related]
12. The relation between H+-uptake and electron flow in chromatophores from photosynthetic bacteria. Crofts AR; Evans EH; Cogdell RJ Ann N Y Acad Sci; 1974 Feb; 227():227-43. PubMed ID: 4597309 [No Abstract] [Full Text] [Related]
13. Thermodynamics and kinetics of photophosphorylation in bacterial chromatophores and their relation with the transmembrane electrochemical potential difference of protons. Baccarini Melandri A; Casadio R; Melandri BA Eur J Biochem; 1977 Sep; 78(2):389-402. PubMed ID: 913405 [No Abstract] [Full Text] [Related]
14. Photosynthetic membrane development in Rhodopseudomonas sphaeroides. Spectral and kinetic characterization of redox components of light-driven electron flow in apparent photosynthetic membrane growth initiation sites. Bowyer JR; Hunter CN; Ohnishi T; Niederman RA J Biol Chem; 1985 Mar; 260(6):3295-304. PubMed ID: 2982855 [TBL] [Abstract][Full Text] [Related]
15. Study of electrogenic electron transfer steps in chromatophore membrane of Chromatium vinosum by the response of merocyanin dye. Itoh S Biochim Biophys Acta; 1980 Dec; 593(2):212-23. PubMed ID: 7236632 [TBL] [Abstract][Full Text] [Related]
16. A role for ubiquinone-10 in the b--c2 segment of the photosynthetic bacterial electron transport chain. Baccarini-Melandri A; Melandri BA FEBS Lett; 1977 Aug; 80(2):459-64. PubMed ID: 891997 [No Abstract] [Full Text] [Related]
17. Aspartate-187 of cytochrome b is not needed for DCCD inhibition of ubiquinol: cytochrome c oxidoreductase in Rhodobacter sphaeroides chromatophores. Shinkarev VP; Ugulava NB; Takahashi E; Crofts AR; Wraight CA Biochemistry; 2000 Nov; 39(46):14232-7. PubMed ID: 11087372 [TBL] [Abstract][Full Text] [Related]
18. Secondary electron transfer in chromatophores of Rhodopseudomonas capsulata A1a pho. Binary out-of-phase oscillations in ubisemiauinone formation and cytochrome b50 reduction with consective light flashes. Bowyer JR; Tierney GV; Crofts AR FEBS Lett; 1979 May; 101(1):201-6. PubMed ID: 446736 [No Abstract] [Full Text] [Related]
19. Transfer of light-induced electron-spin polarization from the intermediary acceptor to the prereduced primary acceptor in the reaction center of photosynthetic bacteria. Gast P; Hoff AJ Biochim Biophys Acta; 1979 Dec; 548(3):520-35. PubMed ID: 228714 [TBL] [Abstract][Full Text] [Related]
20. The effect of dibromothymoquinone on respiratory and photosynthetic electron transport in Rhodopseudomonas capsulata chromatophores. Evans EH; Gooding DA Arch Microbiol; 1976 Dec; 111(1-2):171-4. PubMed ID: 189722 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]