These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 36093257)

  • 1. High thermoelectric performance in metal phosphides MP
    Kang CJ; Jong UG; Kye YH; Yu CJ
    RSC Adv; 2022 Aug; 12(37):23829-23838. PubMed ID: 36093257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superior thermoelectric properties of ternary chalcogenides CsAg
    Jong UG; Kang CJ; Kim SY; Kim HC; Yu CJ
    Phys Chem Chem Phys; 2022 Mar; 24(9):5729-5737. PubMed ID: 35188508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excellent thermoelectric performance in alkali metal phosphides M
    Xu X; Zhou W; Zhan W; Pan Z; Huang H; Li G; Zeng S; Tu Y
    Phys Chem Chem Phys; 2024 Sep; 26(35):23297-23306. PubMed ID: 39207117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultralow lattice thermal conductivity at room temperature in 2D KCuSe from first-principles calculations.
    Xu Z; Wang C; Wu X; Hu L; Liu Y; Gao G
    Phys Chem Chem Phys; 2022 Feb; 24(5):3296-3302. PubMed ID: 35050286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rethinking SnSe Thermoelectrics from Computational Materials Science.
    Bai S; Zhang X; Zhao LD
    Acc Chem Res; 2023 Nov; 56(21):3065-3075. PubMed ID: 37801363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-principles electronic structure, phonon properties, lattice thermal conductivity and prediction of figure of merit of FeVSb half-Heusler.
    Shastri SS; Pandey SK
    J Phys Condens Matter; 2020 Feb; 33(8):085704. PubMed ID: 33212432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A first-principles study of the thermoelectric properties of rhombohedral GeSe.
    Yuan K; Sun Z; Zhang X; Gong X; Tang D
    Phys Chem Chem Phys; 2020 Jan; 22(4):1911-1922. PubMed ID: 31912827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultralow lattice thermal conductivities and excellent thermoelectric properties of hypervalent triiodides XI3 (X = Rb, Cs) discovered by machine learning method.
    Zeng S; Fang L; Gu Z; Wang X; Zhao Y; Li G; Tu Y; Ni J
    J Chem Phys; 2023 Jul; 159(1):. PubMed ID: 37403850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lone-Pair Electron-Driven Thermoelectrics at Room Temperature.
    Mukhopadhyay S; Reinecke TL
    J Phys Chem Lett; 2019 Jul; 10(14):4117-4122. PubMed ID: 31262182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low lattice thermal conductivities and good thermoelectric performance of hexagonal antiperovskites X(Ba & Sr)
    Zeng S; Yan X; Shen Q; Tu Y; Huang H; Li G
    Phys Chem Chem Phys; 2023 Oct; 25(39):26507-26514. PubMed ID: 37782050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermoelectric transport properties of metal phosphide XLiP (X = Sr,Ba).
    Yuan X; Zhao Y; Ni J; Meng S; Dai Z
    J Phys Condens Matter; 2023 Feb; 35(15):. PubMed ID: 36745926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong Chemical Bond Hierarchy Leading to Exceptionally High Thermoelectric Figure of Merit in Oxychalcogenide AgBiTeO.
    Mukherjee M; Singh AK
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8280-8287. PubMed ID: 31986001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Achieving Ultralow Lattice Thermal Conductivity and High Thermoelectric Performance in GeTe Alloys via Introducing Cu
    Zhang Q; Ti Z; Zhu Y; Zhang Y; Cao Y; Li S; Wang M; Li D; Zou B; Hou Y; Wang P; Tang G
    ACS Nano; 2021 Dec; 15(12):19345-19356. PubMed ID: 34734696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bonding heterogeneity and lone pair induced anharmonicity resulted in ultralow thermal conductivity and promising thermoelectric properties in n-type AgPbBiSe
    Dutta M; Pal K; Waghmare UV; Biswas K
    Chem Sci; 2019 May; 10(18):4905-4913. PubMed ID: 31183040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extremely Low Lattice Thermal Conductivity Leading to Superior Thermoelectric Performance in Cu
    Zhang T; Yu T; Ning S; Zhang Z; Qi N; Jiang M; Chen Z
    ACS Appl Mater Interfaces; 2023 Jul; 15(27):32453-32462. PubMed ID: 37368823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental validation of high thermoelectric performance in RECuZnP
    Pöhls JH; Chanakian S; Park J; Ganose AM; Dunn A; Friesen N; Bhattacharya A; Hogan B; Bux S; Jain A; Mar A; Zevalkink A
    Mater Horiz; 2021 Jan; 8(1):209-215. PubMed ID: 34821299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-principles study of the layered thermoelectric material TiNBr.
    Zhang S; Xu B; Lin Y; Nan C; Liu W
    RSC Adv; 2019 Apr; 9(23):12886-12894. PubMed ID: 35520787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-principles predictions of low lattice thermal conductivity and high thermoelectric performance of AZnSb (A = Rb, Cs).
    Haque E
    RSC Adv; 2021 Apr; 11(25):15486-15496. PubMed ID: 35424042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron, phonon and thermoelectric properties of Cu
    Andriyevsky B; Barchiy IE; Studenyak IP; Kashuba AI; Piasecki M
    Sci Rep; 2021 Sep; 11(1):19065. PubMed ID: 34561499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultralow lattice thermal conductivity and high thermoelectric performance of monolayer KCuTe: a first principles study.
    Gu J; Huang L; Liu S
    RSC Adv; 2019 Nov; 9(62):36301-36307. PubMed ID: 35540616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.