These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 3609328)

  • 1. Biotransformation of aromatic compounds. Monitoring fluorinated analogues by NMR.
    Cass AE; Ribbons DW; Rossiter JT; Williams SR
    FEBS Lett; 1987 Aug; 220(2):353-7. PubMed ID: 3609328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catabolism of aromatic compounds by micro-organisms.
    Dagley S
    Adv Microb Physiol; 1971; 6(0):1-46. PubMed ID: 4950664
    [No Abstract]   [Full Text] [Related]  

  • 3. The application of 19F nuclear magnetic resonance to investigate microbial biotransformations of organofluorine compounds.
    Murphy CD
    OMICS; 2007; 11(3):314-24. PubMed ID: 17883342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic transformation of phenol to benzoate via para-carboxylation: use of fluorinated analogues to elucidate the mechanism of transformation.
    Genthner BR; Townsend GT; Chapman PJ
    Biochem Biophys Res Commun; 1989 Aug; 162(3):945-51. PubMed ID: 2764948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Initial reactions in the bacterial degradation of aromatic hydrocarbons.
    Gibson DT
    Zentralbl Bakteriol Orig B; 1976 Jul; 162(1-2):157-68. PubMed ID: 998044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Xenobiotic degradation in industrial sewage: haloaromatics as target substrates.
    Knackmuss HJ
    Biochem Soc Symp; 1983; 48():173-90. PubMed ID: 6400482
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of fluorinated analogues of phenol and hydroxybenzoates on the anaerobic transformation of phenol to benzoate.
    Sharak Genthner BR; Townsend GT; Chapman PJ
    Biodegradation; 1990; 1(1):65-74. PubMed ID: 1368143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coexistence of different pathways in the metabolism of n-propylbenzene by Pseudomonas sp.
    Jigami Y; Kawasaki Y; Omori T; Minoda Y
    Appl Environ Microbiol; 1979 Nov; 38(5):783-8. PubMed ID: 543699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation of o-toluate in Pseudomonas putida isolate 1065 and Rhizopus japonicus ATCC 24794.
    Engelhardt G; Wallnöfer P
    Arch Mikrobiol; 1973 Nov; 93(3):229-37. PubMed ID: 4775413
    [No Abstract]   [Full Text] [Related]  

  • 10. Initial reactions in the oxidation of ethylbenzene by Pseudomonas putida.
    Gibson DT; Gschwendt B; Yeh WK; Kobal VM
    Biochemistry; 1973 Apr; 12(8):1520-8. PubMed ID: 4699984
    [No Abstract]   [Full Text] [Related]  

  • 11. Microbial oxidation of p-diethylbenzene.
    Tanabe M; Dehn RL; Kuo MH
    Biochemistry; 1971 Mar; 10(6):1087-90. PubMed ID: 5550815
    [No Abstract]   [Full Text] [Related]  

  • 12. Influence of side-chain substituents on the position of cleavage of the benzene ring by Pseudomonas fluorescens.
    Seidman MM; Toms A; Wood JM
    J Bacteriol; 1969 Mar; 97(3):1192-7. PubMed ID: 5776526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Easy and inexpensive diffusion tests for detecting the assimilation of aromatic compounds by yeast-like fungi. Part II. Assimilation of aromatic acids.
    Kocwa-Haluch R; Lemek M
    Chemosphere; 1995 Dec; 31(11-12):4333-9. PubMed ID: 8574546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative degradation of aromatic hydrocarbons by microorganisms. II. Metabolism of halogenated aromatic hydrocarbons.
    Gibson DT; Koch JR; Schuld CL; Kallio RE
    Biochemistry; 1968 Nov; 7(11):3795-802. PubMed ID: 5722247
    [No Abstract]   [Full Text] [Related]  

  • 15. The bacterial degradation of benzoic acid and benzenoid compounds under anaerobic conditions: unifying trends and new perspectives.
    Elder DJ; Kelly DJ
    FEMS Microbiol Rev; 1994 Apr; 13(4):441-68. PubMed ID: 8011356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrocarbon cooxidation in microbial systems.
    Raymond RL; Jamison VW; Hudson JO
    Lipids; 1971 Jul; 6(7):453-7. PubMed ID: 4941184
    [No Abstract]   [Full Text] [Related]  

  • 17. Migration of deuterium during hydroxylation of aromatic substrates by liver microsomes. I. Influence of ring substitutents.
    Daly J; Jerina D; Witkop B
    Arch Biochem Biophys; 1968 Nov; 128(2):517-27. PubMed ID: 5698035
    [No Abstract]   [Full Text] [Related]  

  • 18. Quantitative structure-metabolism relationships for substituted benzoic acids in the rat. Computational chemistry, NMR spectroscopy and pattern recognition studies.
    Ghauri FY; Blackledge CA; Glen RC; Sweatman BC; Lindon JC; Beddell CR; Wilson ID; Nicholson JK
    Biochem Pharmacol; 1992 Nov; 44(10):1935-46. PubMed ID: 1449513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reciprocal metabolic effect of benzene and its methyl derivatives in rats. II. Study in vitro.
    Mikulski P; Wiglusz R; Gałuszko E; Delag G
    Bull Inst Marit Trop Med Gdynia; 1979; 30(1):89-95. PubMed ID: 497504
    [No Abstract]   [Full Text] [Related]  

  • 20. Microbial degradation of aromatic compounds.
    Gibson DT
    Science; 1967 Sep; 161(3846):1093-7. PubMed ID: 5597305
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.