These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36093639)

  • 21. Avian thermoregulation in the heat: resting metabolism, evaporative cooling and heat tolerance in Sonoran Desert doves and quail.
    Smith EK; O'Neill J; Gerson AR; Wolf BO
    J Exp Biol; 2015 Nov; 218(Pt 22):3636-46. PubMed ID: 26582934
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Honeybee colony thermoregulation--regulatory mechanisms and contribution of individuals in dependence on age, location and thermal stress.
    Stabentheiner A; Kovac H; Brodschneider R
    PLoS One; 2010 Jan; 5(1):e8967. PubMed ID: 20126462
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heat exchange in relation to blood flow between thorax and abdomen in bumblebees.
    Heinrich B
    J Exp Biol; 1976 Jun; 64(3):561-85. PubMed ID: 945321
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Allometry of kinematics and energetics in carpenter bees (Xylocopa varipuncta) hovering in variable-density gases.
    Roberts SP; Harrison JF; Dudley R
    J Exp Biol; 2004 Feb; 207(Pt 6):993-1004. PubMed ID: 14766958
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How birds dissipate heat before, during and after flight.
    Lewden A; Bishop CM; Askew GN
    J R Soc Interface; 2023 Dec; 20(209):20230442. PubMed ID: 38086401
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of load type (pollen or nectar) and load mass on hovering metabolic rate and mechanical power output in the honey bee Apis mellifera.
    Feuerbacher E; Fewell JH; Roberts SP; Smith EF; Harrison JF
    J Exp Biol; 2003 Jun; 206(Pt 11):1855-65. PubMed ID: 12728007
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence of different thermoregulatory mechanisms between two sympatric Scarabaeus species using infrared thermography and micro-computer tomography.
    Verdú JR; Alba-Tercedor J; Jiménez-Manrique M
    PLoS One; 2012; 7(3):e33914. PubMed ID: 22442735
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermal constraints for stingless bee foragers: the importance of body size and coloration.
    Pereboom JJ; Biesmeijer JC
    Oecologia; 2003 Sep; 137(1):42-50. PubMed ID: 12838404
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phenophysiological variation of a bee that regulates hive humidity, but not hive temperature.
    Ayton S; Tomlinson S; Phillips RD; Dixon KW; Withers PC
    J Exp Biol; 2016 May; 219(Pt 10):1552-62. PubMed ID: 26994173
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of ambient oxygen tension on flight performance, metabolism, and water loss of the honeybee.
    Joos B; Lighton JR; Harrison JF; Suarez RK; Roberts SP
    Physiol Zool; 1997; 70(2):167-74. PubMed ID: 9231389
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An arctic breeding songbird overheats during intense activity even at low air temperatures.
    O'Connor RS; Love OP; Régimbald L; Le Pogam A; Gerson AR; Elliott KH; Hargreaves AL; Vézina F
    Sci Rep; 2024 Jul; 14(1):15193. PubMed ID: 38956145
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scientific Note: Warming Nurses, a New Worker Role Recorded for the First Time in Stingless Bees.
    Roldão-Sbordoni YS; Gomes G; Mateus S; Nascimento FS
    J Econ Entomol; 2019 May; 112(3):1485-1488. PubMed ID: 30698798
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Honey bee forager thoracic temperature inside the nest is tuned to broad-scale differences in recruitment motivation.
    Sadler N; Nieh JC
    J Exp Biol; 2011 Feb; 214(Pt 3):469-75. PubMed ID: 21228206
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dependence of flight behavior and heat production on air temperature in the green darner dragonfly Anax junius (Odonata: Aeshnidae).
    May M
    J Exp Biol; 1995; 198(Pt 11):2385-92. PubMed ID: 9320306
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermal biology of Pacific cicada killers, Sphecius convallis Patton, in the Upper Sonoran Desert.
    Coelho JR; Holliday CW; Hastings JM; Phillips CM
    J Therm Biol; 2016 Apr; 57():101-9. PubMed ID: 27033045
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermoregulatory behavior of lekking male desert locusts, Schistocerca gregaria, in the Sahara Desert.
    Maeno KO; Ould Ely S; Ould Mohamed S; Jaavar MEH; Ould Babah Ebbe MA
    J Therm Biol; 2023 Feb; 112():103466. PubMed ID: 36796911
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of air temperature on ventilation rates and thermoregulation of a flying bat.
    Thomas SP; Follette DB; Farabaugh AT
    Am J Physiol; 1991 May; 260(5 Pt 2):R960-8. PubMed ID: 2035709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Body size phenology in a regional bee fauna: a temporal extension of Bergmann's rule.
    Osorio-Canadas S; Arnan X; Rodrigo A; Torné-Noguera A; Molowny R; Bosch J
    Ecol Lett; 2016 Dec; 19(12):1395-1402. PubMed ID: 27758035
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Altering developmental oxygen exposure influences thermoregulation and flight performance of Manduca sexta.
    Wilmsen SM; Dzialowski EM
    J Exp Biol; 2024 Jul; 227(13):. PubMed ID: 38873724
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Size-dependent Scaling of Stingless Bee Flight Metabolism Reveals an Energetic Benefit to Small Body Size.
    Duell ME; Klok CJ; Roubik DW; Harrison JF
    Integr Comp Biol; 2022 Sep; 62(5):1429-38. PubMed ID: 36066644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.