These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 36093680)
1. Assessment of deep learning pose estimates for sports collision tracking. Blythman R; Saxena M; Tierney GJ; Richter C; Smolic A; Simms C J Sports Sci; 2022 Sep; 40(17):1885-1900. PubMed ID: 36093680 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of 3D Markerless Motion Capture Accuracy Using OpenPose With Multiple Video Cameras. Nakano N; Sakura T; Ueda K; Omura L; Kimura A; Iino Y; Fukashiro S; Yoshioka S Front Sports Act Living; 2020; 2():50. PubMed ID: 33345042 [TBL] [Abstract][Full Text] [Related]
3. Test Platform for Developing New Optical Position Tracking Technology towards Improved Head Motion Correction in Magnetic Resonance Imaging. Silic M; Tam F; Graham SJ Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931521 [TBL] [Abstract][Full Text] [Related]
4. A novel dataset and deep learning-based approach for marker-less motion capture during gait. Vafadar S; Skalli W; Bonnet-Lebrun A; Khalifé M; Renaudin M; Hamza A; Gajny L Gait Posture; 2021 May; 86():70-76. PubMed ID: 33711613 [TBL] [Abstract][Full Text] [Related]
5. A Deep Learning Model for Markerless Pose Estimation Based on Keypoint Augmentation: What Factors Influence Errors in Biomechanical Applications? Ruescas-Nicolau AV; Medina-Ripoll E; de Rosario H; Sanchiz Navarro J; Parrilla E; Juan Lizandra MC Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544186 [TBL] [Abstract][Full Text] [Related]
6. Accuracy of a markerless motion capture system in estimating upper extremity kinematics during boxing. Lahkar BK; Muller A; Dumas R; Reveret L; Robert T Front Sports Act Living; 2022; 4():939980. PubMed ID: 35958668 [TBL] [Abstract][Full Text] [Related]
7. Concurrent assessment of gait kinematics using marker-based and markerless motion capture. Kanko RM; Laende EK; Davis EM; Selbie WS; Deluzio KJ J Biomech; 2021 Oct; 127():110665. PubMed ID: 34380101 [TBL] [Abstract][Full Text] [Related]
8. Applications and limitations of current markerless motion capture methods for clinical gait biomechanics. Wade L; Needham L; McGuigan P; Bilzon J PeerJ; 2022; 10():e12995. PubMed ID: 35237469 [TBL] [Abstract][Full Text] [Related]
9. The development and evaluation of a fully automated markerless motion capture workflow. Needham L; Evans M; Wade L; Cosker DP; McGuigan MP; Bilzon JL; Colyer SL J Biomech; 2022 Nov; 144():111338. PubMed ID: 36252308 [TBL] [Abstract][Full Text] [Related]
10. Pose2Sim: An End-to-End Workflow for 3D Markerless Sports Kinematics-Part 2: Accuracy. Pagnon D; Domalain M; Reveret L Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408326 [TBL] [Abstract][Full Text] [Related]
11. Comparing the accuracy of open-source pose estimation methods for measuring gait kinematics. Washabaugh EP; Shanmugam TA; Ranganathan R; Krishnan C Gait Posture; 2022 Sep; 97():188-195. PubMed ID: 35988434 [TBL] [Abstract][Full Text] [Related]
12. Pose2Sim: An End-to-End Workflow for 3D Markerless Sports Kinematics-Part 1: Robustness. Pagnon D; Domalain M; Reveret L Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640862 [TBL] [Abstract][Full Text] [Related]
13. Development of Smartphone Application for Markerless Three-Dimensional Motion Capture Based on Deep Learning Model. Aoyagi Y; Yamada S; Ueda S; Iseki C; Kondo T; Mori K; Kobayashi Y; Fukami T; Hoshimaru M; Ishikawa M; Ohta Y Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890959 [TBL] [Abstract][Full Text] [Related]
14. Markerless 2D kinematic analysis of underwater running: A deep learning approach. Cronin NJ; Rantalainen T; Ahtiainen JP; Hynynen E; Waller B J Biomech; 2019 Apr; 87():75-82. PubMed ID: 30850178 [TBL] [Abstract][Full Text] [Related]
15. Agreement between a markerless and a marker-based motion capture systems for balance related quantities. Chaumeil A; Lahkar BK; Dumas R; Muller A; Robert T J Biomech; 2024 Mar; 165():112018. PubMed ID: 38412623 [TBL] [Abstract][Full Text] [Related]
17. Healthcare applications of single camera markerless motion capture: a scoping review. Scott B; Seyres M; Philp F; Chadwick EK; Blana D PeerJ; 2022; 10():e13517. PubMed ID: 35642200 [TBL] [Abstract][Full Text] [Related]
18. Concurrent validity of smartphone-based markerless motion capturing to quantify lower-limb joint kinematics in healthy and pathological gait. Horsak B; Eichmann A; Lauer K; Prock K; Krondorfer P; Siragy T; Dumphart B J Biomech; 2023 Oct; 159():111801. PubMed ID: 37738945 [TBL] [Abstract][Full Text] [Related]
19. A Deep Neural Network-based method for estimation of 3D lifting motions. Mehrizi R; Peng X; Xu X; Zhang S; Li K J Biomech; 2019 Feb; 84():87-93. PubMed ID: 30587377 [TBL] [Abstract][Full Text] [Related]
20. Validating markerless pose estimation with 3D X-ray radiography. Moore DD; Walker JD; MacLean JN; Hatsopoulos NG J Exp Biol; 2022 May; 225(9):. PubMed ID: 35466360 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]