These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36093736)

  • 21. Iron transport and its regulation in plants.
    Kobayashi T; Nozoye T; Nishizawa NK
    Free Radic Biol Med; 2019 Mar; 133():11-20. PubMed ID: 30385345
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular aspects of Cu, Fe and Zn homeostasis in plants.
    Grotz N; Guerinot ML
    Biochim Biophys Acta; 2006 Jul; 1763(7):595-608. PubMed ID: 16857279
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent insights into iron homeostasis and their application in graminaceous crops.
    Kobayashi T; Nakanishi H; Nishizawa NK
    Proc Jpn Acad Ser B Phys Biol Sci; 2010; 86(9):900-13. PubMed ID: 21084773
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nitric oxide and iron in plants: an emerging and converging story.
    Graziano M; Lamattina L
    Trends Plant Sci; 2005 Jan; 10(1):4-8. PubMed ID: 15642517
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize.
    Li S; Zhou X; Huang Y; Zhu L; Zhang S; Zhao Y; Guo J; Chen J; Chen R
    BMC Plant Biol; 2013 Aug; 13():114. PubMed ID: 23924433
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Understanding the Complexity of Iron Sensing and Signaling Cascades in Plants.
    Kobayashi T
    Plant Cell Physiol; 2019 Jul; 60(7):1440-1446. PubMed ID: 30796837
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mining iron: iron uptake and transport in plants.
    Kim SA; Guerinot ML
    FEBS Lett; 2007 May; 581(12):2273-80. PubMed ID: 17485078
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potential Implications of Interactions between Fe and S on Cereal Fe Biofortification.
    Kawakami Y; Bhullar NK
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32325653
    [TBL] [Abstract][Full Text] [Related]  

  • 29. OPT3 is a component of the iron-signaling network between leaves and roots and misregulation of OPT3 leads to an over-accumulation of cadmium in seeds.
    Mendoza-Cózatl DG; Xie Q; Akmakjian GZ; Jobe TO; Patel A; Stacey MG; Song L; Demoin DW; Jurisson SS; Stacey G; Schroeder JI
    Mol Plant; 2014 Sep; 7(9):1455-1469. PubMed ID: 24880337
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nitric oxide and plant iron homeostasis.
    Buet A; Simontacchi M
    Ann N Y Acad Sci; 2015 Mar; 1340():39-46. PubMed ID: 25612116
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Iron Nutrition in Plants: Towards a New Paradigm?
    Li M; Watanabe S; Gao F; Dubos C
    Plants (Basel); 2023 Jan; 12(2):. PubMed ID: 36679097
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transition metal transport.
    Krämer U; Talke IN; Hanikenne M
    FEBS Lett; 2007 May; 581(12):2263-72. PubMed ID: 17462635
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Disruption of OsYSL15 leads to iron inefficiency in rice plants.
    Lee S; Chiecko JC; Kim SA; Walker EL; Lee Y; Guerinot ML; An G
    Plant Physiol; 2009 Jun; 150(2):786-800. PubMed ID: 19376836
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Constitutive expression of the ZmZIP7 in Arabidopsis alters metal homeostasis and increases Fe and Zn content.
    Li S; Zhou X; Zhao Y; Li H; Liu Y; Zhu L; Guo J; Huang Y; Yang W; Fan Y; Chen J; Chen R
    Plant Physiol Biochem; 2016 Sep; 106():1-10. PubMed ID: 27135812
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimal copper supply is required for normal plant iron deficiency responses.
    Waters BM; Armbrust LC
    Plant Signal Behav; 2013; 8(12):e26611. PubMed ID: 24084753
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MdMYB58 Modulates Fe Homeostasis by Directly Binding to the MdMATE43 Promoter in Plants.
    Wang FP; Wang XF; Zhang J; Ma F; Hao YJ
    Plant Cell Physiol; 2018 Dec; 59(12):2476-2489. PubMed ID: 30165667
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcriptomic and physiological characterization of the fefe mutant of melon (Cucumis melo) reveals new aspects of iron-copper crosstalk.
    Waters BM; McInturf SA; Amundsen K
    New Phytol; 2014 Sep; 203(4):1128-1145. PubMed ID: 24975482
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solving the puzzle of Fe homeostasis by integrating molecular, mathematical, and societal models.
    Hodgens C; Akpa BS; Long TA
    Curr Opin Plant Biol; 2021 Dec; 64():102149. PubMed ID: 34839201
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Overexpression of ZmIRT1 and ZmZIP3 Enhances Iron and Zinc Accumulation in Transgenic Arabidopsis.
    Li S; Zhou X; Li H; Liu Y; Zhu L; Guo J; Liu X; Fan Y; Chen J; Chen R
    PLoS One; 2015; 10(8):e0136647. PubMed ID: 26317616
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Copper and iron homeostasis in Arabidopsis: responses to metal deficiencies, interactions and biotechnological applications.
    Puig S; Andrés-Colás N; García-Molina A; Peñarrubia L
    Plant Cell Environ; 2007 Mar; 30(3):271-290. PubMed ID: 17263774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.