These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36093885)

  • 1. Dual-Network Structured Hydrogel Electrolytes Engaged Solid-State Rechargeable Zn-Air/Iodide Hybrid Batteries.
    Liu Q; Xia C; He C; Guo W; Wu ZP; Li Z; Zhao Q; Xia BY
    Angew Chem Int Ed Engl; 2022 Nov; 61(44):e202210567. PubMed ID: 36093885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergetic Chemistry and Interface Engineering of Hydrogel Electrolyte to Strengthen Durability of Solid-State Zn-Air Batteries.
    Tang K; Fu J; Wu M; Hua T; Liu J; Song L; Hu H
    Small Methods; 2022 Feb; 6(2):e2101276. PubMed ID: 35174986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Metal-Organic Framework as a Multifunctional Ionic Sieve Membrane for Long-Life Aqueous Zinc-Iodide Batteries.
    Yang H; Qiao Y; Chang Z; Deng H; He P; Zhou H
    Adv Mater; 2020 Sep; 32(38):e2004240. PubMed ID: 32797719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a Dual-Electrolyte Battery System Based on a High-Energy NCM811-Si/C Full Battery Electrode-Compatible Electrolyte.
    He S; Huang S; Zhao Y; Qin H; Shan Y; Hou X
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):54069-54078. PubMed ID: 34748308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible Hydrogel Electrolyte with Superior Mechanical Properties Based on Poly(vinyl alcohol) and Bacterial Cellulose for the Solid-State Zinc-Air Batteries.
    Zhao N; Wu F; Xing Y; Qu W; Chen N; Shang Y; Yan M; Li Y; Li L; Chen R
    ACS Appl Mater Interfaces; 2019 May; 11(17):15537-15542. PubMed ID: 30901190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(vinylene carbonate)-Based Composite Polymer Electrolyte with Enhanced Interfacial Stability To Realize High-Performance Room-Temperature Solid-State Sodium Batteries.
    Chen S; Che H; Feng F; Liao J; Wang H; Yin Y; Ma ZF
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43056-43065. PubMed ID: 31660726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogel Electrolytes for Quasi-Solid Zinc-Based Batteries.
    Lu K; Jiang T; Hu H; Wu M
    Front Chem; 2020; 8():546728. PubMed ID: 33330352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural Polysaccharide Strengthened Hydrogel Electrolyte and Biopolymer Derived Carbon for Durable Aqueous Zinc Ion Storage.
    Ji C; Wu D; Liu Z; Mi H; Liao Y; Wu M; Cui H; Li X; Wu T; Bai Z
    ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35546577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A safe and robust dual-network hydrogel electrolyte coupled with multi-heteroatom doped carbon nanosheets for flexible quasi-solid-state zinc ion hybrid supercapacitors.
    Wu D; Ji C; Mi H; Guo F; Cui H; Qiu P; Yang N
    Nanoscale; 2021 Oct; 13(37):15869-15881. PubMed ID: 34519738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastable Zinc Anodes Enabled by Anti-Dehydration Ionic Liquid Polymer Electrolyte for Aqueous Zn Batteries.
    Huang J; Chi X; Du Y; Qiu Q; Liu Y
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4008-4016. PubMed ID: 33433993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Realizing an All-Round Hydrogel Electrolyte toward Environmentally Adaptive Dendrite-Free Aqueous Zn-MnO
    Chen M; Chen J; Zhou W; Han X; Yao Y; Wong CP
    Adv Mater; 2021 Mar; 33(9):e2007559. PubMed ID: 33511697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishing High-Performance Quasi-Solid Zn/I
    Shang W; Zhu J; Liu Y; Kang L; Liu S; Huang B; Song J; Li X; Jiang F; Du W; Gao Y; Luo H
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):24756-24764. PubMed ID: 34004110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Ultrastable Na-Zn Solid-State Hybrid Battery Enabled by a Robust Dual-Cross-linked Polymer Electrolyte.
    Huang J; Chi X; Yang J; Liu Y
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17583-17591. PubMed ID: 32195564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Progress in Electrolytes for Zn-Air Batteries.
    Chen P; Zhang K; Tang D; Liu W; Meng F; Huang Q; Liu J
    Front Chem; 2020; 8():372. PubMed ID: 32528925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amphoteric Cellulose-Based Double-Network Hydrogel Electrolyte Toward Ultra-Stable Zn Anode.
    Zhang H; Gan X; Song Z; Zhou J
    Angew Chem Int Ed Engl; 2023 Mar; 62(13):e202217833. PubMed ID: 36720709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Intrinsically Self-Healing NiCo||Zn Rechargeable Battery with a Self-Healable Ferric-Ion-Crosslinking Sodium Polyacrylate Hydrogel Electrolyte.
    Huang Y; Liu J; Wang J; Hu M; Mo F; Liang G; Zhi C
    Angew Chem Int Ed Engl; 2018 Jul; 57(31):9810-9813. PubMed ID: 29905394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potassium Superoxide: A Unique Alternative for Metal-Air Batteries.
    Xiao N; Ren X; McCulloch WD; Gourdin G; Wu Y
    Acc Chem Res; 2018 Sep; 51(9):2335-2343. PubMed ID: 30178665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries.
    Zhou L; Minafra N; Zeier WG; Nazar LF
    Acc Chem Res; 2021 Jun; 54(12):2717-2728. PubMed ID: 34032414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.