These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36094012)

  • 1. Exploring Structure-Sensitive Relations for Small Species Adsorption Using Machine Learning.
    Zong X; Vlachos DG
    J Chem Inf Model; 2022 Sep; 62(18):4361-4368. PubMed ID: 36094012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning Prediction of H Adsorption Energies on Ag Alloys.
    Hoyt RA; Montemore MM; Fampiou I; Chen W; Tritsaris G; Kaxiras E
    J Chem Inf Model; 2019 Apr; 59(4):1357-1365. PubMed ID: 30897905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Representations of Heterogeneous Carbon Reforming Catalysis Using Machine Learning.
    Li X; Chiong R; Hu Z; Cornforth D; Page AJ
    J Chem Theory Comput; 2019 Dec; 15(12):6882-6894. PubMed ID: 31503488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine-Learning-Augmented Chemisorption Model for CO2 Electroreduction Catalyst Screening.
    Ma X; Li Z; Achenie LE; Xin H
    J Phys Chem Lett; 2015 Sep; 6(18):3528-33. PubMed ID: 26722718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic and molecular adsorption on transition-metal carbide (111) surfaces from density-functional theory: a trend study of surface electronic factors.
    Vojvodic A; Ruberto C; Lundqvist BI
    J Phys Condens Matter; 2010 Sep; 22(37):375504. PubMed ID: 21403200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning and Scaling Laws for Prediction of Accurate Adsorption Energy.
    Nayak S; Bhattacharjee S; Choi JH; Lee SC
    J Phys Chem A; 2020 Jan; 124(1):247-254. PubMed ID: 31809047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying the origin of inter-adsorbate interactions on reactive surfaces for catalyst screening and design.
    Krishnamoorthy A; Yildiz B
    Phys Chem Chem Phys; 2015 Sep; 17(34):22227-34. PubMed ID: 26243171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermetallic NaAu2 as a heterogeneous catalyst for low-temperature CO oxidation.
    Xiao C; Wang LL; Maligal-Ganesh RV; Smetana V; Walen H; Thiel PA; Miller GJ; Johnson DD; Huang W
    J Am Chem Soc; 2013 Jul; 135(26):9592-5. PubMed ID: 23758405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of atoms on cu surfaces: a density functional theory study.
    Pang XY; Xue LQ; Wang GC
    Langmuir; 2007 Apr; 23(9):4910-7. PubMed ID: 17388612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards rational catalyst design: boosting the rapid prediction of transition-metal activity by improved scaling relations.
    Wang Y; Xiao L; Qi Y; Mahmoodinia M; Feng X; Yang J; Zhu YA; Chen D
    Phys Chem Chem Phys; 2019 Sep; 21(35):19269-19280. PubMed ID: 31441913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting Segregation Energy in Single Atom Alloys Using Physics and Machine Learning.
    Salem M; Cowan MJ; Mpourmpakis G
    ACS Omega; 2022 Feb; 7(5):4471-4481. PubMed ID: 35155939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient catalyst screening using graph neural networks to predict strain effects on adsorption energy.
    Price CC; Singh A; Frey NC; Shenoy VB
    Sci Adv; 2022 Nov; 8(47):eabq5944. PubMed ID: 36417537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying Outstanding Transition-Metal-Alloy Heterogeneous Catalysts for the Oxygen Reduction and Evolution Reactions via Subgroup Discovery.
    Foppa L; Ghiringhelli LM
    Top Catal; 2022; 65(1-4):196-206. PubMed ID: 35185306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energies of Adsorbed Catalytic Intermediates on Transition Metal Surfaces: Calorimetric Measurements and Benchmarks for Theory.
    Campbell CT
    Acc Chem Res; 2019 Apr; 52(4):984-993. PubMed ID: 30879291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining Machine Learning and Many-Body Calculations: Coverage-Dependent Adsorption of CO on Rh(111).
    Liu P; Wang J; Avargues N; Verdi C; Singraber A; Karsai F; Chen XQ; Kresse G
    Phys Rev Lett; 2023 Feb; 130(7):078001. PubMed ID: 36867825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive Study of Lithium Adsorption and Diffusion on Janus Mo/WXY (X, Y = S, Se, Te) Using First-Principles and Machine Learning Approaches.
    Chaney G; Ibrahim A; Ersan F; Çakır D; Ataca C
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36388-36406. PubMed ID: 34304560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Group and Period-Based Representations for Improved Machine Learning Prediction of Heterogeneous Alloy Catalysts.
    Li X; Chiong R; Page AJ
    J Phys Chem Lett; 2021 Jun; 12(21):5156-5162. PubMed ID: 34032450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Density Functional Theory and Machine Learning Description and Prediction of Oxygen Atom Chemisorption on Platinum Surfaces and Nanoparticles.
    Rivera Rocabado DS; Nanba Y; Koyama M
    ACS Omega; 2021 Jul; 6(27):17424-17432. PubMed ID: 34278128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Universality in surface mixing rule of adsorption strength for small adsorbates on binary transition metal alloys.
    Ko J; Kwon H; Kang H; Kim BK; Han JW
    Phys Chem Chem Phys; 2015 Feb; 17(5):3123-30. PubMed ID: 25515855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting metal-metal interactions. II. Accelerating generalized schemes through physical insights.
    Choksi TS; Streibel V; Abild-Pedersen F
    J Chem Phys; 2020 Mar; 152(9):094702. PubMed ID: 33480718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.