These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 36094087)
1. Attention-aware contrastive learning for predicting T cell receptor-antigen binding specificity. Fang Y; Liu X; Liu H Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36094087 [TBL] [Abstract][Full Text] [Related]
2. Attention-wise masked graph contrastive learning for predicting molecular property. Liu H; Huang Y; Liu X; Deng L Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35940592 [TBL] [Abstract][Full Text] [Related]
3. Deep learning-based prediction of the T cell receptor-antigen binding specificity. Lu T; Zhang Z; Zhu J; Wang Y; Jiang P; Xiao X; Bernatchez C; Heymach JV; Gibbons DL; Wang J; Xu L; Reuben A; Wang T Nat Mach Intell; 2021 Oct; 3(10):864-875. PubMed ID: 36003885 [TBL] [Abstract][Full Text] [Related]
4. DeepLION2: deep multi-instance contrastive learning framework enhancing the prediction of cancer-associated T cell receptors by attention strategy on motifs. Qian X; Yang G; Li F; Zhang X; Zhu X; Lai X; Xiao X; Wang T; Wang J Front Immunol; 2024; 15():1345586. PubMed ID: 38515756 [TBL] [Abstract][Full Text] [Related]
5. AttnTAP: A Dual-input Framework Incorporating the Attention Mechanism for Accurately Predicting TCR-peptide Binding. Xu Y; Qian X; Tong Y; Li F; Wang K; Zhang X; Liu T; Wang J Front Genet; 2022; 13():942491. PubMed ID: 36072653 [TBL] [Abstract][Full Text] [Related]
6. Predicting TCR-Epitope Binding Specificity Using Deep Metric Learning and Multimodal Learning. Luu AM; Leistico JR; Miller T; Kim S; Song JS Genes (Basel); 2021 Apr; 12(4):. PubMed ID: 33920780 [TBL] [Abstract][Full Text] [Related]
7. Performance comparison of TCR-pMHC prediction tools reveals a strong data dependency. Deng L; Ly C; Abdollahi S; Zhao Y; Prinz I; Bonn S Front Immunol; 2023; 14():1128326. PubMed ID: 37143667 [TBL] [Abstract][Full Text] [Related]
8. TEPCAM: Prediction of T-cell receptor-epitope binding specificity via interpretable deep learning. Chen J; Zhao B; Lin S; Sun H; Mao X; Wang M; Chu Y; Hong L; Wei DQ; Li M; Xiong Y Protein Sci; 2024 Jan; 33(1):e4841. PubMed ID: 37983648 [TBL] [Abstract][Full Text] [Related]
9. NetTCR-2.1: Lessons and guidance on how to develop models for TCR specificity predictions. Montemurro A; Jessen LE; Nielsen M Front Immunol; 2022; 13():1055151. PubMed ID: 36561755 [TBL] [Abstract][Full Text] [Related]
10. MPID-T: database for sequence-structure-function information on T-cell receptor/peptide/MHC interactions. Tong JC; Kong L; Tan TW; Ranganathan S Appl Bioinformatics; 2006; 5(2):111-4. PubMed ID: 16722775 [TBL] [Abstract][Full Text] [Related]
11. A structural voyage toward an understanding of the MHC-I-restricted immune response: lessons learned and much to be learned. Gras S; Burrows SR; Turner SJ; Sewell AK; McCluskey J; Rossjohn J Immunol Rev; 2012 Nov; 250(1):61-81. PubMed ID: 23046123 [TBL] [Abstract][Full Text] [Related]
12. DynaDom: structure-based prediction of T cell receptor inter-domain and T cell receptor-peptide-MHC (class I) association angles. Hoffmann T; Marion A; Antes I BMC Struct Biol; 2017 Feb; 17(1):2. PubMed ID: 28148269 [TBL] [Abstract][Full Text] [Related]
13. IEPAPI: a method for immune epitope prediction by incorporating antigen presentation and immunogenicity. Deng J; Zhou X; Zhang P; Cheng W; Liu M; Tian J Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37232386 [TBL] [Abstract][Full Text] [Related]
14. Single T cell receptor-mediated recognition of an identical HIV-derived peptide presented by multiple HLA class I molecules. Ueno T; Tomiyama H; Takiguchi M J Immunol; 2002 Nov; 169(9):4961-9. PubMed ID: 12391209 [TBL] [Abstract][Full Text] [Related]
15. Analysis of peptide binding patterns in different major histocompatibility complex/T cell receptor complexes using pigeon cytochrome c-specific T cell hybridomas. Evidence that a single peptide binds major histocompatibility complex in different conformations. Bhayani H; Paterson Y J Exp Med; 1989 Nov; 170(5):1609-25. PubMed ID: 2553848 [TBL] [Abstract][Full Text] [Related]
16. TCRpMHCmodels: Structural modelling of TCR-pMHC class I complexes. Jensen KK; Rantos V; Jappe EC; Olsen TH; Jespersen MC; Jurtz V; Jessen LE; Lanzarotti E; Mahajan S; Peters B; Nielsen M; Marcatili P Sci Rep; 2019 Oct; 9(1):14530. PubMed ID: 31601838 [TBL] [Abstract][Full Text] [Related]
17. T-cell receptor triggering is critically dependent on the dimensions of its peptide-MHC ligand. Choudhuri K; Wiseman D; Brown MH; Gould K; van der Merwe PA Nature; 2005 Jul; 436(7050):578-82. PubMed ID: 16049493 [TBL] [Abstract][Full Text] [Related]
18. Accurate TCR-pMHC interaction prediction using a BERT-based transfer learning method. Zhang J; Ma W; Yao H Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38040492 [TBL] [Abstract][Full Text] [Related]
19. Isolation of T cell receptors targeting recurrent neoantigens in hematological malignancies. Tubb VM; Schrikkema DS; Croft NP; Purcell AW; Linnemann C; Freriks MR; Chen F; Long HM; Lee SP; Bendle GM J Immunother Cancer; 2018 Jul; 6(1):70. PubMed ID: 30001747 [TBL] [Abstract][Full Text] [Related]
20. Attention network for predicting T-cell receptor-peptide binding can associate attention with interpretable protein structural properties. Koyama K; Hashimoto K; Nagao C; Mizuguchi K Front Bioinform; 2023; 3():1274599. PubMed ID: 38170146 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]