BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 36094208)

  • 1. Coevolution of Metabolic Pathways in Blattodea and Their
    Kinjo Y; Bourguignon T; Hongoh Y; Lo N; Tokuda G; Ohkuma M
    Microbiol Spectr; 2022 Oct; 10(5):e0277922. PubMed ID: 36094208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallel and Gradual Genome Erosion in the Blattabacterium Endosymbionts of Mastotermes darwiniensis and Cryptocercus Wood Roaches.
    Kinjo Y; Bourguignon T; Tong KJ; Kuwahara H; Lim SJ; Yoon KB; Shigenobu S; Park YC; Nalepa CA; Hongoh Y; Ohkuma M; Lo N; Tokuda G
    Genome Biol Evol; 2018 Jun; 10(6):1622-1630. PubMed ID: 29860278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative genomics of Blattabacterium cuenoti: the frozen legacy of an ancient endosymbiont genome.
    Patiño-Navarrete R; Moya A; Latorre A; Peretó J
    Genome Biol Evol; 2013; 5(2):351-61. PubMed ID: 23355305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary convergence and nitrogen metabolism in Blattabacterium strain Bge, primary endosymbiont of the cockroach Blattella germanica.
    López-Sánchez MJ; Neef A; Peretó J; Patiño-Navarrete R; Pignatelli M; Latorre A; Moya A
    PLoS Genet; 2009 Nov; 5(11):e1000721. PubMed ID: 19911043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenetic analysis of Blattabacterium, endosymbiotic bacteria from the wood roach, Cryptocercus (Blattodea: Cryptocercidae), including a description of three new species.
    Clark JW; Kambhampati S
    Mol Phylogenet Evol; 2003 Jan; 26(1):82-8. PubMed ID: 12470940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete genome sequence of the endosymbiont Blattabacterium from the cockroach Nauphoeta cinerea (Blattodea: Blaberidae).
    Kambhampati S; Alleman A; Park Y
    Genomics; 2013; 102(5-6):479-83. PubMed ID: 24071059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maintenance of essential amino acid synthesis pathways in the Blattabacterium cuenoti symbiont of a wood-feeding cockroach.
    Tokuda G; Elbourne LD; Kinjo Y; Saitoh S; Sabree Z; Hojo M; Yamada A; Hayashi Y; Shigenobu S; Bandi C; Paulsen IT; Watanabe H; Lo N
    Biol Lett; 2013 Jun; 9(3):20121153. PubMed ID: 23515978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic stasis in an ancient symbiosis: genome-scale metabolic networks from two Blattabacterium cuenoti strains, primary endosymbionts of cockroaches.
    González-Domenech CM; Belda E; Patiño-Navarrete R; Moya A; Peretó J; Latorre A
    BMC Microbiol; 2012 Jan; 12 Suppl 1(Suppl 1):S5. PubMed ID: 22376077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome shrinkage and loss of nutrient-providing potential in the obligate symbiont of the primitive termite Mastotermes darwiniensis.
    Sabree ZL; Huang CY; Arakawa G; Tokuda G; Lo N; Watanabe H; Moran NA
    Appl Environ Microbiol; 2012 Jan; 78(1):204-10. PubMed ID: 22020505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for cocladogenesis between diverse dictyopteran lineages and their intracellular endosymbionts.
    Lo N; Bandi C; Watanabe H; Nalepa C; Beninati T
    Mol Biol Evol; 2003 Jun; 20(6):907-13. PubMed ID: 12716997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Host-specific assemblages typify gut microbial communities of related insect species.
    Sabree ZL; Moran NA
    Springerplus; 2014; 3():138. PubMed ID: 24741474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Advances in insect obligate endosymbionts and their genomes--a review].
    Rao Q; Wu H
    Wei Sheng Wu Xue Bao; 2014 Jul; 54(7):728-36. PubMed ID: 25252453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome economization in the endosymbiont of the wood roach Cryptocercus punctulatus due to drastic loss of amino acid synthesis capabilities.
    Neef A; Latorre A; Peretó J; Silva FJ; Pignatelli M; Moya A
    Genome Biol Evol; 2011; 3():1437-48. PubMed ID: 22094859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary rates are correlated between cockroach symbionts and mitochondrial genomes.
    Arab DA; Bourguignon T; Wang Z; Ho SYW; Lo N
    Biol Lett; 2020 Jan; 16(1):20190702. PubMed ID: 31910734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel histories of horizontal gene transfer facilitated extreme reduction of endosymbiont genomes in sap-feeding insects.
    Sloan DB; Nakabachi A; Richards S; Qu J; Murali SC; Gibbs RA; Moran NA
    Mol Biol Evol; 2014 Apr; 31(4):857-71. PubMed ID: 24398322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. To B or Not to B: Comparative Genomics Suggests
    Santos-Garcia D; Juravel K; Freilich S; Zchori-Fein E; Latorre A; Moya A; Morin S; Silva FJ
    Front Microbiol; 2018; 9():2254. PubMed ID: 30319574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Of Cockroaches and Symbionts: Recent Advances in the Characterization of the Relationship between
    Latorre A; Domínguez-Santos R; García-Ferris C; Gil R
    Life (Basel); 2022 Feb; 12(2):. PubMed ID: 35207577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic Coevolution in the Bacterial Symbiosis of Whiteflies and Related Plant Sap-Feeding Insects.
    Luan JB; Chen W; Hasegawa DK; Simmons AM; Wintermantel WM; Ling KS; Fei Z; Liu SS; Douglas AE
    Genome Biol Evol; 2015 Sep; 7(9):2635-47. PubMed ID: 26377567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters.
    Wu D; Daugherty SC; Van Aken SE; Pai GH; Watkins KL; Khouri H; Tallon LJ; Zaborsky JM; Dunbar HE; Tran PL; Moran NA; Eisen JA
    PLoS Biol; 2006 Jun; 4(6):e188. PubMed ID: 16729848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cuticle supplementation and nitrogen recycling by a dual bacterial symbiosis in a family of xylophagous beetles.
    Kiefer JST; Bauer E; Okude G; Fukatsu T; Kaltenpoth M; Engl T
    ISME J; 2023 Jul; 17(7):1029-1039. PubMed ID: 37085551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.