These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36094334)

  • 21. Signal metrics analysis of oscillatory patterns in bacterial multi-omic networks.
    Bardozzo F; Lió P; Tagliaferri R
    Bioinformatics; 2021 Jun; 37(10):1411-1419. PubMed ID: 33185666
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ViSiBooL-visualization and simulation of Boolean networks with temporal constraints.
    Schwab J; Burkovski A; Siegle L; Müssel C; Kestler HA
    Bioinformatics; 2017 Feb; 33(4):601-604. PubMed ID: 27797768
    [TBL] [Abstract][Full Text] [Related]  

  • 23. pystablemotifs: Python library for attractor identification and control in Boolean networks.
    Rozum JC; Deritei D; Park KH; Gómez Tejeda Zañudo J; Albert R
    Bioinformatics; 2022 Feb; 38(5):1465-1466. PubMed ID: 34875008
    [TBL] [Abstract][Full Text] [Related]  

  • 24. TRFBA: an algorithm to integrate genome-scale metabolic and transcriptional regulatory networks with incorporation of expression data.
    Motamedian E; Mohammadi M; Shojaosadati SA; Heydari M
    Bioinformatics; 2017 Apr; 33(7):1057-1063. PubMed ID: 28065897
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Semi-supervised network inference using simulated gene expression dynamics.
    Nguyen P; Braun R
    Bioinformatics; 2018 Apr; 34(7):1148-1156. PubMed ID: 29186340
    [TBL] [Abstract][Full Text] [Related]  

  • 26. GEMMER: GEnome-wide tool for Multi-scale Modeling data Extraction and Representation for Saccharomyces cerevisiae.
    Mondeel TDGA; Crémazy F; Barberis M
    Bioinformatics; 2018 Jun; 34(12):2147-2149. PubMed ID: 29401212
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SJARACNe: a scalable software tool for gene network reverse engineering from big data.
    Khatamian A; Paull EO; Califano A; Yu J
    Bioinformatics; 2019 Jun; 35(12):2165-2166. PubMed ID: 30388204
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Global stabilizing control of large-scale biomolecular regulatory networks.
    An S; Jang SY; Park SM; Lee CK; Kim HM; Cho KH
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36688702
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Finding the fixed points of a Boolean network from a positive feedback vertex set.
    Aracena J; Cabrera-Crot L; Salinas L
    Bioinformatics; 2021 May; 37(8):1148-1155. PubMed ID: 33135734
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Boolean Dynamic Modeling Approaches to Study Plant Gene Regulatory Networks: Integration, Validation, and Prediction.
    Velderraín JD; Martínez-García JC; Álvarez-Buylla ER
    Methods Mol Biol; 2017; 1629():297-315. PubMed ID: 28623593
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extreme learning machines for reverse engineering of gene regulatory networks from expression time series.
    Rubiolo M; Milone DH; Stegmayer G
    Bioinformatics; 2018 Apr; 34(7):1253-1260. PubMed ID: 29182723
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single-cell transcriptional analysis to uncover regulatory circuits driving cell fate decisions in early mouse development.
    Chen H; Guo J; Mishra SK; Robson P; Niranjan M; Zheng J
    Bioinformatics; 2015 Apr; 31(7):1060-6. PubMed ID: 25416748
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An algebra-based method for inferring gene regulatory networks.
    Vera-Licona P; Jarrah A; Garcia-Puente LD; McGee J; Laubenbacher R
    BMC Syst Biol; 2014 Mar; 8():37. PubMed ID: 24669835
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation.
    Matsumoto H; Kiryu H; Furusawa C; Ko MSH; Ko SBH; Gouda N; Hayashi T; Nikaido I
    Bioinformatics; 2017 Aug; 33(15):2314-2321. PubMed ID: 28379368
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A network of networks approach for modeling interconnected brain tissue-specific networks.
    Kawakubo H; Matsui Y; Kushima I; Ozaki N; Shimamura T
    Bioinformatics; 2019 Sep; 35(17):3092-3101. PubMed ID: 30649245
    [TBL] [Abstract][Full Text] [Related]  

  • 36. AEON.py: Python library for attractor analysis in asynchronous Boolean networks.
    Beneš N; Brim L; Huvar O; Pastva S; Šafránek D; Šmijáková E
    Bioinformatics; 2022 Oct; 38(21):4978-4980. PubMed ID: 36102786
    [TBL] [Abstract][Full Text] [Related]  

  • 37. BiXGBoost: a scalable, flexible boosting-based method for reconstructing gene regulatory networks.
    Zheng R; Li M; Chen X; Wu FX; Pan Y; Wang J
    Bioinformatics; 2019 Jun; 35(11):1893-1900. PubMed ID: 30395189
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Boolean network sketches: a unifying framework for logical model inference.
    Beneš N; Brim L; Huvar O; Pastva S; Šafránek D
    Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 37004199
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Boolean network control algorithm guided by forward dynamic programming.
    Moradi M; Goliaei S; Foroughmand-Araabi MH
    PLoS One; 2019; 14(5):e0215449. PubMed ID: 31048917
    [TBL] [Abstract][Full Text] [Related]  

  • 40. EpistasisRank and EpistasisKatz: interaction network centrality methods that integrate prior knowledge networks.
    Parvandeh S; McKinney BA
    Bioinformatics; 2019 Jul; 35(13):2329-2331. PubMed ID: 30481259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.