These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 36094823)

  • 1. Composite Indium Tin Oxide Nanofibers with Embedded Hematite Nanoparticles for Photoelectrochemical Water Splitting.
    Elishav O; Stone D; Tsyganok A; Jayanthi S; Ellis DS; Yeshurun T; Maor II; Levi A; Beilin V; Shter GE; Yerushalmi R; Rothschild A; Banin U; Grader GS
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):41851-41860. PubMed ID: 36094823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. n-Fe₂O₃ to N⁺-TiO₂Heterojunction Photoanode for Photoelectrochemical Water Oxidation.
    Yang JS; Lin WH; Lin CY; Wang BS; Wu JJ
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13314-21. PubMed ID: 26027640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the Role of Substrate Tin Diffusion on Hematite Based Photoelectrochemical Water Splitting System.
    Natarajan K; Bhatt P; Yadav P; Pandey K; Tripathi B; Kumar M
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1856-1863. PubMed ID: 29448672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron collection in host-guest nanostructured hematite photoanodes for water splitting: the influence of scaffold doping density.
    Kondofersky I; Dunn HK; Müller A; Mandlmeier B; Feckl JM; Fattakhova-Rohlfing D; Scheu C; Peter LM; Bein T
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4623-30. PubMed ID: 25562687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CVD Growth of Hematite Thin Films for Photoelectrochemical Water Splitting: Effect of Precursor-Substrate Distance on Their Final Properties.
    Fernandez-Izquierdo L; Spera EL; Durán B; Marotti RE; Dalchiele EA; Del Rio R; Hevia SA
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Bulk and Interfacial Charge Transfer Dynamics for Efficient Photoelectrochemical Water Splitting: The Case of Hematite Nanorod Arrays.
    Wang J; Feng B; Su J; Guo L
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23143-50. PubMed ID: 27508404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Diffusion versus Intentional Doping: Beneficial and Damaging Impact on Hematite Photoanode Interfaces.
    Daminelli LM; Rodríguez-Gutierrez I; Pires FA; Dos Santos GT; Bettini J; Souza FL
    ACS Appl Mater Interfaces; 2023 Nov; 15(47):55030-55042. PubMed ID: 37943615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimony-doped tin oxide nanorods as a transparent conducting electrode for enhancing photoelectrochemical oxidation of water by hematite.
    Sun Y; Chemelewski WD; Berglund SP; Li C; He H; Shi G; Mullins CB
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5494-9. PubMed ID: 24665964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Foreign In
    Bu X; Wang G; Tian Y
    Nanoscale; 2017 Nov; 9(44):17513-17523. PubMed ID: 29109997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile Fabrication of a Highly Crystalline and Well-Interconnected Hematite Nanoparticle Photoanode for Efficient Visible-Light-Driven Water Oxidation.
    Katsuki T; Zahran ZN; Tanaka K; Eo T; Mohamed EA; Tsubonouchi Y; Berber MR; Yagi M
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39282-39290. PubMed ID: 34387481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hematite Photoanode with Complex Nanoarchitecture Providing Tunable Gradient Doping and Low Onset Potential for Photoelectrochemical Water Splitting.
    Ahn HJ; Goswami A; Riboni F; Kment S; Naldoni A; Mohajernia S; Zboril R; Schmuki P
    ChemSusChem; 2018 Jun; 11(11):1873-1879. PubMed ID: 29644796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of carbon dots - derived underlayer in hematite photoanodes.
    Guo Q; Luo H; Zhang J; Ruan Q; Prakash Periasamy A; Fang Y; Xie Z; Li X; Wang X; Tang J; Briscoe J; Titirici M; Jorge AB
    Nanoscale; 2020 Oct; 12(39):20220-20229. PubMed ID: 33000831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sn-doped hematite nanostructures for photoelectrochemical water splitting.
    Ling Y; Wang G; Wheeler DA; Zhang JZ; Li Y
    Nano Lett; 2011 May; 11(5):2119-25. PubMed ID: 21476581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward High-Performance Hematite Nanotube Photoanodes: Charge-Transfer Engineering at Heterointerfaces.
    Kim do H; Andoshe DM; Shim YS; Moon CW; Sohn W; Choi S; Kim TL; Lee M; Park H; Hong K; Kwon KC; Suh JM; Kim JS; Lee JH; Jang HW
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23793-800. PubMed ID: 27551887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NiFeO
    Yoon KY; Park J; Jung M; Ji SG; Lee H; Seo JH; Kwak MJ; Il Seok S; Lee JH; Jang JH
    Nat Commun; 2021 Jul; 12(1):4309. PubMed ID: 34262036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced photoelectrochemical water splitting efficiency of a hematite-ordered Sb:SnO2 host-guest system.
    Wang L; Palacios-Padrós A; Kirchgeorg R; Tighineanu A; Schmuki P
    ChemSusChem; 2014 Feb; 7(2):421-4. PubMed ID: 24449523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergies of co-doping in ultra-thin hematite photoanodes for solar water oxidation: In and Ti as representative case.
    Singh AP; Tossi C; Tittonen I; Hellman A; Wickman B
    RSC Adv; 2020 Sep; 10(55):33307-33316. PubMed ID: 35515023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced photoelectrochemical water oxidation via atomic layer deposition of TiO2 on fluorine-doped tin oxide nanoparticle films.
    Cordova IA; Peng Q; Ferrall IL; Rieth AJ; Hoertz PG; Glass JT
    Nanoscale; 2015 May; 7(18):8584-92. PubMed ID: 25899449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface engineering of hematite nanorods photoanode towards optimized photoelectrochemical water splitting.
    Li Z; Wu J; Liao L; He X; Huang B; Zhang S; Wei Y; Wang S; Zhou W
    J Colloid Interface Sci; 2022 Nov; 626():879-888. PubMed ID: 35835039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly efficient utilization of light and charge separation over a hematite photoanode achieved through a noncontact photonic crystal film for photoelectrochemical water splitting.
    Yu WY; Ma DK; Yang DP; Yang XG; Xu QL; Chen W; Huang S
    Phys Chem Chem Phys; 2020 Sep; 22(36):20202-20211. PubMed ID: 32966422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.