BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 36094959)

  • 1. TAMC: A deep-learning approach to predict motif-centric transcriptional factor binding activity based on ATAC-seq profile.
    Yang T; Henao R
    PLoS Comput Biol; 2022 Sep; 18(9):e1009921. PubMed ID: 36094959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MMGAT: a graph attention network framework for ATAC-seq motifs finding.
    Wu X; Hou W; Zhao Z; Huang L; Sheng N; Yang Q; Zhang S; Wang Y
    BMC Bioinformatics; 2024 Apr; 25(1):158. PubMed ID: 38643066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeFCoM: analysis and modeling of transcription factor binding sites using a motif-centric genomic footprinter.
    Quach B; Furey TS
    Bioinformatics; 2017 Apr; 33(7):956-963. PubMed ID: 27993786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MMGraph: a multiple motif predictor based on graph neural network and coexisting probability for ATAC-seq data.
    Zhang S; Yang L; Wu X; Sheng N; Fu Y; Ma A; Wang Y
    Bioinformatics; 2022 Sep; 38(19):4636-4638. PubMed ID: 35997564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GNNMF: a multi-view graph neural network for ATAC-seq motif finding.
    Zhang S; Wu X; Lian Z; Zuo C; Wang Y
    BMC Genomics; 2024 Mar; 25(1):300. PubMed ID: 38515040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. maxATAC: Genome-scale transcription-factor binding prediction from ATAC-seq with deep neural networks.
    Cazares TA; Rizvi FW; Iyer B; Chen X; Kotliar M; Bejjani AT; Wayman JA; Donmez O; Wronowski B; Parameswaran S; Kottyan LC; Barski A; Weirauch MT; Prasath VBS; Miraldi ER
    PLoS Comput Biol; 2023 Jan; 19(1):e1010863. PubMed ID: 36719906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BERT-TFBS: a novel BERT-based model for predicting transcription factor binding sites by transfer learning.
    Wang K; Zeng X; Zhou J; Liu F; Luan X; Wang X
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38701417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATAC-seq footprinting unravels kinetics of transcription factor binding during zygotic genome activation.
    Bentsen M; Goymann P; Schultheis H; Klee K; Petrova A; Wiegandt R; Fust A; Preussner J; Kuenne C; Braun T; Kim J; Looso M
    Nat Commun; 2020 Aug; 11(1):4267. PubMed ID: 32848148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Base-resolution prediction of transcription factor binding signals by a deep learning framework.
    Zhang Q; He Y; Wang S; Chen Z; Guo Z; Cui Z; Liu Q; Huang DS
    PLoS Comput Biol; 2022 Mar; 18(3):e1009941. PubMed ID: 35263332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Integrative Framework for Combining Sequence and Epigenomic Data to Predict Transcription Factor Binding Sites Using Deep Learning.
    Jing F; Zhang SW; Cao Z; Zhang S
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(1):355-364. PubMed ID: 30835229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reproducible inference of transcription factor footprints in ATAC-seq and DNase-seq datasets using protocol-specific bias modeling.
    Karabacak Calviello A; Hirsekorn A; Wurmus R; Yusuf D; Ohler U
    Genome Biol; 2019 Feb; 20(1):42. PubMed ID: 30791920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-Scale Capsule Network for Predicting DNA-Protein Binding Sites.
    Zhang Q; Yu W; Han K; Nandi AK; Huang DS
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(5):1793-1800. PubMed ID: 32960766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The native cistrome and sequence motif families of the maize ear.
    Savadel SD; Hartwig T; Turpin ZM; Vera DL; Lung PY; Sui X; Blank M; Frommer WB; Dennis JH; Zhang J; Bass HW
    PLoS Genet; 2021 Aug; 17(8):e1009689. PubMed ID: 34383745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DeepSTF: predicting transcription factor binding sites by interpretable deep neural networks combining sequence and shape.
    Ding P; Wang Y; Zhang X; Gao X; Liu G; Yu B
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37328639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Profiling of chromatin accessibility identifies transcription factor binding sites across the genome of Aspergillus species.
    Huang L; Li X; Dong L; Wang B; Pan L
    BMC Biol; 2021 Sep; 19(1):189. PubMed ID: 34488759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing deep learning methods in cis-regulatory motif finding based on genomic sequencing data.
    Zhang S; Ma A; Zhao J; Xu D; Ma Q; Wang Y
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34607350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpretable single-cell transcription factor prediction based on deep learning with attention mechanism.
    Gong M; He Y; Wang M; Zhang Y; Ding C
    Comput Biol Chem; 2023 Oct; 106():107923. PubMed ID: 37598467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Locating transcription factor binding sites by fully convolutional neural network.
    Zhang Q; Wang S; Chen Z; He Y; Liu Q; Huang DS
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33498086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving analysis of transcription factor binding sites within ChIP-Seq data based on topological motif enrichment.
    Worsley Hunt R; Mathelier A; Del Peso L; Wasserman WW
    BMC Genomics; 2014 Jun; 15(1):472. PubMed ID: 24927817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leveraging chromatin accessibility for transcriptional regulatory network inference in T Helper 17 Cells.
    Miraldi ER; Pokrovskii M; Watters A; Castro DM; De Veaux N; Hall JA; Lee JY; Ciofani M; Madar A; Carriero N; Littman DR; Bonneau R
    Genome Res; 2019 Mar; 29(3):449-463. PubMed ID: 30696696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.