These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 36095176)
1. Strong isoprene emission response to temperature in tundra vegetation. Seco R; Holst T; Davie-Martin CL; Simin T; Guenther A; Pirk N; Rinne J; Rinnan R Proc Natl Acad Sci U S A; 2022 Sep; 119(38):e2118014119. PubMed ID: 36095176 [TBL] [Abstract][Full Text] [Related]
2. Impact of three decades of warming, increased nutrient availability, and increased cloudiness on the fluxes of greenhouse gases and biogenic volatile organic compounds in a subarctic tundra heath. Ndah FA; Michelsen A; Rinnan R; Maljanen M; Mikkonen S; Kivimäenpää M Glob Chang Biol; 2024 Jul; 30(7):e17416. PubMed ID: 38994730 [TBL] [Abstract][Full Text] [Related]
3. Warming increases isoprene emissions from an arctic fen. Lindwall F; Svendsen SS; Nielsen CS; Michelsen A; Rinnan R Sci Total Environ; 2016 May; 553():297-304. PubMed ID: 26933965 [TBL] [Abstract][Full Text] [Related]
4. Origin of volatile organic compound emissions from subarctic tundra under global warming. Ghirardo A; Lindstein F; Koch K; Buegger F; Schloter M; Albert A; Michelsen A; Winkler JB; Schnitzler JP; Rinnan R Glob Chang Biol; 2020 Mar; 26(3):1908-1925. PubMed ID: 31957145 [TBL] [Abstract][Full Text] [Related]
5. Phenological stage of tundra vegetation controls bidirectional exchange of BVOCs in a climate change experiment on a subarctic heath. Baggesen N; Li T; Seco R; Holst T; Michelsen A; Rinnan R Glob Chang Biol; 2021 Jun; 27(12):2928-2944. PubMed ID: 33709612 [TBL] [Abstract][Full Text] [Related]
6. Contrasting responses of major and minor volatile compounds to warming and gall-infestation in the Arctic willow Salix myrsinites. Swanson L; Li T; Rinnan R Sci Total Environ; 2021 Nov; 793():148516. PubMed ID: 34174616 [TBL] [Abstract][Full Text] [Related]
7. Climate change-induced vegetation change as a driver of increased subarctic biogenic volatile organic compound emissions. Valolahti H; Kivimäenpää M; Faubert P; Michelsen A; Rinnan R Glob Chang Biol; 2015 Sep; 21(9):3478-88. PubMed ID: 25994223 [TBL] [Abstract][Full Text] [Related]
8. Impacts of elevation on plant traits and volatile organic compound emissions in deciduous tundra shrubs. Simin T; Davie-Martin CL; Petersen J; Høye TT; Rinnan R Sci Total Environ; 2022 Sep; 837():155783. PubMed ID: 35537508 [TBL] [Abstract][Full Text] [Related]
9. Biogenic volatile organic compound ambient mixing ratios and emission rates in the Alaskan Arctic tundra. Angot H; McErlean K; Hu L; Millet DB; Hueber J; Cui K; Moss J; Wielgasz C; Milligan T; Ketcherside D; Bret-Harte MS; Helmig D Biogeosciences; 2020; 17(23):6219-6236. PubMed ID: 35222652 [TBL] [Abstract][Full Text] [Related]
10. Ecosystem-scale volatile organic compound fluxes during an extreme drought in a broadleaf temperate forest of the Missouri Ozarks (central USA). Seco R; Karl T; Guenther A; Hosman KP; Pallardy SG; Gu L; Geron C; Harley P; Kim S Glob Chang Biol; 2015 Oct; 21(10):3657-74. PubMed ID: 25980459 [TBL] [Abstract][Full Text] [Related]
11. Biogenic volatile organic compound emissions along a high arctic soil moisture gradient. Svendsen SH; Lindwall F; Michelsen A; Rinnan R Sci Total Environ; 2016 Dec; 573():131-138. PubMed ID: 27552736 [TBL] [Abstract][Full Text] [Related]
12. Remote sensing estimation of isoprene and monoterpene emissions generated by natural vegetation in Monterrey, Mexico. Gastelum SL; Mejía-Velázquez GM; Lozano-García DF Environ Monit Assess; 2016 Jun; 188(6):321. PubMed ID: 27147234 [TBL] [Abstract][Full Text] [Related]
13. Doubled volatile organic compound emissions from subarctic tundra under simulated climate warming. Faubert P; Tiiva P; Rinnan Å; Michelsen A; Holopainen JK; Rinnan R New Phytol; 2010 Jul; 187(1):199-208. PubMed ID: 20456056 [TBL] [Abstract][Full Text] [Related]
14. New particle formation in forests inhibited by isoprene emissions. Kiendler-Scharr A; Wildt J; Dal Maso M; Hohaus T; Kleist E; Mentel TF; Tillmann R; Uerlings R; Schurr U; Wahner A Nature; 2009 Sep; 461(7262):381-4. PubMed ID: 19759617 [TBL] [Abstract][Full Text] [Related]
15. Photochemical modeling of the Ozark isoprene volcano: MEGAN, BEIS, and their impacts on air quality predictions. Carlton AG; Baker KR Environ Sci Technol; 2011 May; 45(10):4438-45. PubMed ID: 21520901 [TBL] [Abstract][Full Text] [Related]
16. Separating direct and indirect effects of rising temperatures on biogenic volatile emissions in the Arctic. Rinnan R; Iversen LL; Tang J; Vedel-Petersen I; Schollert M; Schurgers G Proc Natl Acad Sci U S A; 2020 Dec; 117(51):32476-32483. PubMed ID: 33257556 [TBL] [Abstract][Full Text] [Related]
17. Synergistic effects of insect herbivory and changing climate on plant volatile emissions in the subarctic tundra. Rieksta J; Li T; Michelsen A; Rinnan R Glob Chang Biol; 2021 Oct; 27(20):5030-5042. PubMed ID: 34185349 [TBL] [Abstract][Full Text] [Related]
18. Isoprene Emissions and Ozone Formation in Urban Conditions: A Case Study in the City of Rio de Janeiro. da Silva CM; Corrêa SM; Arbilla G Bull Environ Contam Toxicol; 2018 Jan; 100(1):184-188. PubMed ID: 29236157 [TBL] [Abstract][Full Text] [Related]
19. Uncovering the volatile nature of tropical coastal marine ecosystems in a changing world. Exton DA; McGenity TJ; Steinke M; Smith DJ; Suggett DJ Glob Chang Biol; 2015 Apr; 21(4):1383-94. PubMed ID: 25311223 [TBL] [Abstract][Full Text] [Related]
20. The interacting effects of elevated atmospheric CO2 concentration, drought and leaf-to-air vapour pressure deficit on ecosystem isoprene fluxes. Pegoraro E; Rey A; Barron-Gafford G; Monson R; Malhi Y; Murthy R Oecologia; 2005 Nov; 146(1):120-9. PubMed ID: 16001217 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]