These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 36095176)
21. Atmospheric biogenic volatile organic compounds in the Alaskan Arctic tundra: constraints from measurements at Toolik Field Station. Selimovic V; Ketcherside D; Chaliyakunnel S; Wielgasz C; Permar W; Angot H; Millet DB; Fried A; Helmig D; Hu L Atmos Chem Phys; 2022; 22(21):14037-14058. PubMed ID: 37476609 [TBL] [Abstract][Full Text] [Related]
22. Investigation of biogenic volatile organic compounds emissions in the Qinghai-Tibetan Plateau. Wang L; Lun X; Wu J; Wang Q; Tao J; Dou X; Zhang Z Sci Total Environ; 2023 Dec; 902():165877. PubMed ID: 37549697 [TBL] [Abstract][Full Text] [Related]
23. Intermediate-scale horizontal isoprene concentrations in the near-canopy forest atmosphere and implications for emission heterogeneity. Batista CE; Ye J; Ribeiro IO; Guimarães PC; Medeiros ASS; Barbosa RG; Oliveira RL; Duvoisin S; Jardine KJ; Gu D; Guenther AB; McKinney KA; Martins LD; Souza RAF; Martin ST Proc Natl Acad Sci U S A; 2019 Sep; 116(39):19318-19323. PubMed ID: 31501347 [TBL] [Abstract][Full Text] [Related]
24. Tracer-based characterization of source variations of ambient isoprene mixing ratios in a hillocky megacity, India, influenced by the local meteorology. Yadav R; Beig G; Anand V; Kalbande R; Maji S Environ Res; 2022 Apr; 205():112465. PubMed ID: 34863985 [TBL] [Abstract][Full Text] [Related]
25. Amplification of plant volatile defence against insect herbivory in a warming Arctic tundra. Li T; Holst T; Michelsen A; Rinnan R Nat Plants; 2019 Jun; 5(6):568-574. PubMed ID: 31182843 [TBL] [Abstract][Full Text] [Related]
26. Large drought-induced variations in oak leaf volatile organic compound emissions during PINOT NOIR 2012. Geron C; Daly R; Harley P; Rasmussen R; Seco R; Guenther A; Karl T; Gu L Chemosphere; 2016 Mar; 146():8-21. PubMed ID: 26706927 [TBL] [Abstract][Full Text] [Related]
27. Emission of constitutive isoprene, induced monoterpenes, and other volatiles under high temperatures in Eucalyptus camaldulensis: A Guidolotti G; Pallozzi E; Gavrichkova O; Scartazza A; Mattioni M; Loreto F; Calfapietra C Plant Cell Environ; 2019 Jun; 42(6):1929-1938. PubMed ID: 30663094 [TBL] [Abstract][Full Text] [Related]
28. Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: determination of specific emission rates for thirty-one tree species. Aydin YM; Yaman B; Koca H; Dasdemir O; Kara M; Altiok H; Dumanoglu Y; Bayram A; Tolunay D; Odabasi M; Elbir T Sci Total Environ; 2014 Aug; 490():239-53. PubMed ID: 24858222 [TBL] [Abstract][Full Text] [Related]
29. Isoprenoid emissions from Schima superba and Cunninghamia lanceolata: Their responses to elevated temperature by two warming facilities. Ma F; Zhang G; Zhang J; Luo X; Liao L; Wang H; Tang X; Yi Z Sci Total Environ; 2024 Jun; 930():172669. PubMed ID: 38677435 [TBL] [Abstract][Full Text] [Related]
30. Airborne measurements of isoprene and monoterpene emissions from southeastern U.S. forests. Yu H; Guenther A; Gu D; Warneke C; Geron C; Goldstein A; Graus M; Karl T; Kaser L; Misztal P; Yuan B Sci Total Environ; 2017 Oct; 595():149-158. PubMed ID: 28384571 [TBL] [Abstract][Full Text] [Related]
31. Rapid leaf development drives the seasonal pattern of volatile organic compound (VOC) fluxes in a 'coppiced' bioenergy poplar plantation. Brilli F; Gioli B; Fares S; Terenzio Z; Zona D; Gielen B; Loreto F; Janssens IA; Ceulemans R Plant Cell Environ; 2016 Mar; 39(3):539-55. PubMed ID: 26386252 [TBL] [Abstract][Full Text] [Related]
32. Volatile emissions from thawing permafrost soils are influenced by meltwater drainage conditions. Kramshøj M; Albers CN; Svendsen SH; Björkman MP; Lindwall F; Björk RG; Rinnan R Glob Chang Biol; 2019 May; 25(5):1704-1716. PubMed ID: 30806027 [TBL] [Abstract][Full Text] [Related]
33. Climatic warming increases isoprene emission from a subarctic heath. Tiiva P; Faubert P; Michelsen A; Holopainen T; Holopainen JK; Rinnan R New Phytol; 2008; 180(4):853-63. PubMed ID: 18680543 [TBL] [Abstract][Full Text] [Related]
34. Isoprene emission from terrestrial ecosystems in response to global change: minding the gap between models and observations. Monson RK; Trahan N; Rosenstiel TN; Veres P; Moore D; Wilkinson M; Norby RJ; Volder A; Tjoelker MG; Briske DD; Karnosky DF; Fall R Philos Trans A Math Phys Eng Sci; 2007 Jul; 365(1856):1677-95. PubMed ID: 17513269 [TBL] [Abstract][Full Text] [Related]
35. [Effects of Elevated Ozone on Biogenic Volatile Organic Compounds (BVOCs) Emission: A Review]. Feng ZZ; Yuan XY Huan Jing Ke Xue; 2018 Nov; 39(11):5257-5265. PubMed ID: 30628251 [TBL] [Abstract][Full Text] [Related]
36. Plant specific emission pattern of biogenic volatile organic compounds (BVOCs) from common plant species of Central India. Malik TG; Gajbhiye T; Pandey SK Environ Monit Assess; 2018 Oct; 190(11):631. PubMed ID: 30284054 [TBL] [Abstract][Full Text] [Related]
37. Isoprene in urban Atlantic forests: Variability, origin, and implications on the air quality of a subtropical megacity. Dos Santos TC; Dominutti P; Pedrosa GS; Coelho MS; Nogueira T; Borbon A; Souza SR; Fornaro A Sci Total Environ; 2022 Jun; 824():153728. PubMed ID: 35157860 [TBL] [Abstract][Full Text] [Related]
38. Isoprene is more affected by climate drivers than monoterpenes: A meta-analytic review on plant isoprenoid emissions. Feng Z; Yuan X; Fares S; Loreto F; Li P; Hoshika Y; Paoletti E Plant Cell Environ; 2019 Jun; 42(6):1939-1949. PubMed ID: 30767225 [TBL] [Abstract][Full Text] [Related]
39. Isoprene emission structures tropical tree biogeography and community assembly responses to climate. Taylor TC; McMahon SM; Smith MN; Boyle B; Violle C; van Haren J; Simova I; Meir P; Ferreira LV; de Camargo PB; da Costa ACL; Enquist BJ; Saleska SR New Phytol; 2018 Oct; 220(2):435-446. PubMed ID: 29974469 [TBL] [Abstract][Full Text] [Related]
40. Quantitative determination of biogenic volatile organic compounds in the atmosphere using proton-transfer reaction linear ion trap mass spectrometry. Mielke LH; Pratt KA; Shepson PB; McLuckey SA; Wisthaler A; Hansel A Anal Chem; 2010 Oct; 82(19):7952-7. PubMed ID: 20822166 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]