These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36095191)

  • 1. Anelasticity in thin-shell nanolattices.
    Chen IT; Poblete FR; Bagal A; Zhu Y; Chang CH
    Proc Natl Acad Sci U S A; 2022 Sep; 119(38):e2201589119. PubMed ID: 36095191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large anelasticity and associated energy dissipation in single-crystalline nanowires.
    Cheng G; Miao C; Qin Q; Li J; Xu F; Haftbaradaran H; Dickey EC; Gao H; Zhu Y
    Nat Nanotechnol; 2015 Aug; 10(8):687-91. PubMed ID: 26167767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical metamaterials made of freestanding quasi-BCC nanolattices of gold and copper with ultra-high energy absorption capacity.
    Cheng H; Zhu X; Cheng X; Cai P; Liu J; Yao H; Zhang L; Duan J
    Nat Commun; 2023 Mar; 14(1):1243. PubMed ID: 36871035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-Dimensional High-Entropy Alloy-Polymer Composite Nanolattices That Overcome the Strength-Recoverability Trade-off.
    Zhang X; Yao J; Liu B; Yan J; Lu L; Li Y; Gao H; Li X
    Nano Lett; 2018 Jul; 18(7):4247-4256. PubMed ID: 29901403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional nano-architected scaffolds with tunable stiffness for efficient bone tissue growth.
    Maggi A; Li H; Greer JR
    Acta Biomater; 2017 Nov; 63():294-305. PubMed ID: 28923538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design, Fabrication, and Mechanics of 3D Micro-/Nanolattices.
    Zhang X; Wang Y; Ding B; Li X
    Small; 2020 Apr; 16(15):e1902842. PubMed ID: 31483576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size Effect Suppresses Brittle Failure in Hollow Cu60Zr40 Metallic Glass Nanolattices Deformed at Cryogenic Temperatures.
    Lee SW; Jafary-Zadeh M; Chen DZ; Zhang YW; Greer JR
    Nano Lett; 2015 Sep; 15(9):5673-81. PubMed ID: 26262592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Achieving the theoretical limit of strength in shell-based carbon nanolattices.
    Wang Y; Zhang X; Li Z; Gao H; Li X
    Proc Natl Acad Sci U S A; 2022 Aug; 119(34):e2119536119. PubMed ID: 35969756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enabling Durable Ultralow-k Capacitors with Enhanced Breakdown Strength in Density-Variant Nanolattices.
    Kim MW; Lifson ML; Gallivan R; Greer JR; Kim BJ
    Adv Mater; 2023 Feb; 35(6):e2208409. PubMed ID: 36380720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanolattices: An Emerging Class of Mechanical Metamaterials.
    Bauer J; Meza LR; Schaedler TA; Schwaiger R; Zheng X; Valdevit L
    Adv Mater; 2017 Oct; 29(40):. PubMed ID: 28873250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable Anelasticity in Amorphous Si Nanowires.
    Wang Y; Liang B; Xu S; Tian L; Minor AM; Shan Z
    Nano Lett; 2020 Jan; 20(1):449-455. PubMed ID: 31804092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anelastic behavior in GaAs semiconductor nanowires.
    Chen B; Gao Q; Wang Y; Liao X; Mai YW; Tan HH; Zou J; Ringer SP; Jagadish C
    Nano Lett; 2013 Jul; 13(7):3169-72. PubMed ID: 23755996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design Parameters for Subwavelength Transparent Conductive Nanolattices.
    Diaz Leon JJ; Feigenbaum E; Kobayashi NP; Han TY; Hiszpanski AM
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35360-35367. PubMed ID: 28960951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mathematical foundations of anelasticity: existence of smooth global intermediate configurations.
    Goodbrake C; Goriely A; Yavari A
    Proc Math Phys Eng Sci; 2021 Jan; 477(2245):20200462. PubMed ID: 33642925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The anelastic Ericksen problem: universal eigenstrains and deformations in compressible isotropic elastic solids.
    Yavari A; Goriely A
    Proc Math Phys Eng Sci; 2016 Dec; 472(2196):20160690. PubMed ID: 28119554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anelastic Behaviour of Commercial Die-Cast Magnesium Alloys: Effect of Temperature and Alloy Composition.
    Ang HQ
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Through-Process Finite Element Modeling for Warm Flanging Process of Large-Diameter Aluminum Alloy Shell of Gas Insulated (Metal-Enclosed) Switchgear.
    Zhang DW; Shi TL; Zhao SD
    Materials (Basel); 2019 Jun; 12(11):. PubMed ID: 31159407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices.
    Meza LR; Das S; Greer JR
    Science; 2014 Sep; 345(6202):1322-6. PubMed ID: 25214624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-Area Nanolattice Film with Enhanced Modulus, Hardness, and Energy Dissipation.
    Bagal A; Zhang XA; Shahrin R; Dandley EC; Zhao J; Poblete FR; Oldham CJ; Zhu Y; Parsons GN; Bobko C; Chang CH
    Sci Rep; 2017 Aug; 7(1):9145. PubMed ID: 28831168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical insight on the origin of anelasticity in zinc oxide nanowires.
    Tawfik SA; Osborne DA; Spencer MJS
    Nanoscale; 2020 Jan; 12(4):2439-2444. PubMed ID: 31840703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.