These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 36095215)
1. Nanobodies and chemical cross-links advance the structural and functional analysis of PI3Kα. Hart JR; Liu X; Pan C; Liang A; Ueno L; Xu Y; Quezada A; Zou X; Yang S; Zhou Q; Schoonooghe S; Hassanzadeh-Ghassabeh G; Xia T; Shui W; Yang D; Vogt PK; Wang MW Proc Natl Acad Sci U S A; 2022 Sep; 119(38):e2210769119. PubMed ID: 36095215 [TBL] [Abstract][Full Text] [Related]
2. Structural and mechanistic insights provided by single particle cryo-EM analysis of phosphoinositide 3-kinase (PI3Kα). Vogt PK; Hart JR; Yang S; Zhou Q; Yang D; Wang MW Biochim Biophys Acta Rev Cancer; 2023 Sep; 1878(5):188947. PubMed ID: 37394020 [TBL] [Abstract][Full Text] [Related]
3. Cryo-EM structures of PI3Kα reveal conformational changes during inhibition and activation. Liu X; Yang S; Hart JR; Xu Y; Zou X; Zhang H; Zhou Q; Xia T; Zhang Y; Yang D; Wang MW; Vogt PK Proc Natl Acad Sci U S A; 2021 Nov; 118(45):. PubMed ID: 34725156 [TBL] [Abstract][Full Text] [Related]
4. Calmodulin (CaM) Activates PI3Kα by Targeting the "Soft" CaM-Binding Motifs in Both the nSH2 and cSH2 Domains of p85α. Zhang M; Li Z; Wang G; Jang H; Sacks DB; Zhang J; Gaponenko V; Nussinov R J Phys Chem B; 2018 Dec; 122(49):11137-11146. PubMed ID: 30047727 [TBL] [Abstract][Full Text] [Related]
5. Defining How Oncogenic and Developmental Mutations of PIK3R1 Alter the Regulation of Class IA Phosphoinositide 3-Kinases. Dornan GL; Stariha JTB; Rathinaswamy MK; Powell CJ; Boulanger MJ; Burke JE Structure; 2020 Feb; 28(2):145-156.e5. PubMed ID: 31831213 [TBL] [Abstract][Full Text] [Related]
6. Interaction of Calmodulin with the cSH2 Domain of the p85 Regulatory Subunit. Wang G; Zhang M; Jang H; Lu S; Lin S; Chen G; Nussinov R; Zhang J; Gaponenko V Biochemistry; 2018 Mar; 57(12):1917-1928. PubMed ID: 29494137 [TBL] [Abstract][Full Text] [Related]
7. Kinetic and structural analyses reveal residues in phosphoinositide 3-kinase α that are critical for catalysis and substrate recognition. Maheshwari S; Miller MS; O'Meally R; Cole RN; Amzel LM; Gabelli SB J Biol Chem; 2017 Aug; 292(33):13541-13550. PubMed ID: 28676499 [TBL] [Abstract][Full Text] [Related]
8. Cryo-EM structures of cancer-specific helical and kinase domain mutations of PI3Kα. Liu X; Zhou Q; Hart JR; Xu Y; Yang S; Yang D; Vogt PK; Wang MW Proc Natl Acad Sci U S A; 2022 Nov; 119(46):e2215621119. PubMed ID: 36343266 [TBL] [Abstract][Full Text] [Related]
9. Regulation of lipid binding underlies the activation mechanism of class IA PI3-kinases. Hon WC; Berndt A; Williams RL Oncogene; 2012 Aug; 31(32):3655-66. PubMed ID: 22120714 [TBL] [Abstract][Full Text] [Related]
10. Computational Insights into the Interactions between Calmodulin and the c/nSH2 Domains of p85α Regulatory Subunit of PI3Kα: Implication for PI3Kα Activation by Calmodulin. Ni D; Liu D; Zhang J; Lu S Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29300353 [TBL] [Abstract][Full Text] [Related]
11. Activation of PI3K/Akt signaling by n-terminal SH2 domain mutants of the p85α regulatory subunit of PI3K is enhanced by deletion of its c-terminal SH2 domain. Hofmann BT; Jücker M Cell Signal; 2012 Oct; 24(10):1950-4. PubMed ID: 22735814 [TBL] [Abstract][Full Text] [Related]
12. The structural basis for Ras activation of PI3Kα lipid kinase. Zhang M; Jang H; Nussinov R Phys Chem Chem Phys; 2019 Jun; 21(22):12021-12028. PubMed ID: 31135801 [TBL] [Abstract][Full Text] [Related]
13. Combining properties of different classes of PI3Kα inhibitors to understand the molecular features that confer selectivity. Gong GQ; Kendall JD; Dickson JMJ; Rewcastle GW; Buchanan CM; Denny WA; Shepherd PR; Flanagan JU Biochem J; 2017 Jun; 474(13):2261-2276. PubMed ID: 28526744 [TBL] [Abstract][Full Text] [Related]
14. Autophosphorylation of serine 608 in the p85 regulatory subunit of wild type or cancer-associated mutants of phosphoinositide 3-kinase does not affect its lipid kinase activity. Layton MJ; Saad M; Church NL; Pearson RB; Mitchell CA; Phillips WA BMC Biochem; 2012 Dec; 13():30. PubMed ID: 23270540 [TBL] [Abstract][Full Text] [Related]
15. Assembly and Molecular Architecture of the Phosphoinositide 3-Kinase p85α Homodimer. LoPiccolo J; Kim SJ; Shi Y; Wu B; Wu H; Chait BT; Singer RH; Sali A; Brenowitz M; Bresnick AR; Backer JM J Biol Chem; 2015 Dec; 290(51):30390-405. PubMed ID: 26475863 [TBL] [Abstract][Full Text] [Related]
16. Dynamics of the phosphoinositide 3-kinase p110δ interaction with p85α and membranes reveals aspects of regulation distinct from p110α. Burke JE; Vadas O; Berndt A; Finegan T; Perisic O; Williams RL Structure; 2011 Aug; 19(8):1127-37. PubMed ID: 21827948 [TBL] [Abstract][Full Text] [Related]
17. Conformational disruption of PI3Kδ regulation by immunodeficiency mutations in Dornan GL; Siempelkamp BD; Jenkins ML; Vadas O; Lucas CL; Burke JE Proc Natl Acad Sci U S A; 2017 Feb; 114(8):1982-1987. PubMed ID: 28167755 [TBL] [Abstract][Full Text] [Related]
19. Insights into the mechanism of the PIK3CA E545K activating mutation using MD simulations. Leontiadou H; Galdadas I; Athanasiou C; Cournia Z Sci Rep; 2018 Oct; 8(1):15544. PubMed ID: 30341384 [TBL] [Abstract][Full Text] [Related]
20. Insight into the mechanism of allosteric activation of PI3Kα by oncoprotein K-Ras4B. Li X; Dai J; Ni D; He X; Zhang H; Zhang J; Fu Q; Liu Y; Lu S Int J Biol Macromol; 2020 Feb; 144():643-655. PubMed ID: 31816384 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]