These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 36096004)

  • 41. Orosensory-directed identification of astringent mouthfeel and bitter-tasting compounds in red wine.
    Hufnagel JC; Hofmann T
    J Agric Food Chem; 2008 Feb; 56(4):1376-86. PubMed ID: 18193832
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Flavan-3-ols: nature, occurrence and biological activity.
    Aron PM; Kennedy JA
    Mol Nutr Food Res; 2008 Jan; 52(1):79-104. PubMed ID: 18081206
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development and validation of an UHPLC-HRMS protocol for the analysis of flavan-3-ol metabolites and catabolites in urine, plasma and feces of rats fed a red wine proanthocyanidin extract.
    Pereira-Caro G; Ordóñez JL; Ludwig I; Gaillet S; Mena P; Del Rio D; Rouanet JM; Bindon KA; Moreno-Rojas JM; Crozier A
    Food Chem; 2018 Jun; 252():49-60. PubMed ID: 29478563
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inhibitory effect of fungoid chitosan in the generation of aldehydes relevant to photooxidative decay in a sulphite-free white wine.
    Castro Marin A; Stocker P; Chinnici F; Cassien M; Thétiot-Laurent S; Vidal N; Riponi C; Robillard B; Culcasi M; Pietri S
    Food Chem; 2021 Jul; 350():129222. PubMed ID: 33607411
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Polyphenols, antioxidant potential and color of fortified wines during accelerated ageing: the Madeira Wine case study.
    Pereira V; Albuquerque F; Cacho J; Marques JC
    Molecules; 2013 Mar; 18(3):2997-3017. PubMed ID: 23462532
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Yeast influence on the formation of stable pigments in red winemaking.
    Morata A; Loira I; Heras JM; Callejo MJ; Tesfaye W; González C; Suárez-Lepe JA
    Food Chem; 2016 Apr; 197(Pt A):686-91. PubMed ID: 26617004
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Low molecular-weight phenols in Tannat wines made by alternative winemaking procedures.
    Favre G; Peña-Neira Á; Baldi C; Hernández N; Traverso S; Gil G; González-Neves G
    Food Chem; 2014 Sep; 158():504-12. PubMed ID: 24731376
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Influence of Prefermentative Addition of Gallic Acid on the Phenolic Composition and Chromatic Characteristics of Cabernet Sauvignon Wines.
    Liu Y; Zhang B; He F; Duan CQ; Shi Y
    J Food Sci; 2016 Jul; 81(7):C1669-78. PubMed ID: 27240192
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of SO2 concentration on polyphenol development during red wine micro-oxygenation.
    Tao J; Dykes SI; Kilmartin PA
    J Agric Food Chem; 2007 Jul; 55(15):6104-9. PubMed ID: 17602651
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of ultrasound on the production of xanthylium cation pigments in a model wine.
    Fu XZ; Zhang QA; Zhang BS; Liu P
    Food Chem; 2018 Dec; 268():431-440. PubMed ID: 30064780
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Grape and wine polymeric polyphenols: Their importance in enology.
    Li L; Sun B
    Crit Rev Food Sci Nutr; 2019; 59(4):563-579. PubMed ID: 28933917
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Wine phenolics.
    Waterhouse AL
    Ann N Y Acad Sci; 2002 May; 957():21-36. PubMed ID: 12074959
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Targeted metabolomics of anthocyanin derivatives during prolonged wine aging: Evolution, color contribution and aging prediction.
    Zhang XK; Lan YB; Huang Y; Zhao X; Duan CQ
    Food Chem; 2021 Mar; 339():127795. PubMed ID: 32836023
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Various applications of liquid chromatography-mass spectrometry to the analysis of phenolic compounds.
    Pérez-Magariño S; Revilla I; González-SanJosé ML; Beltrán S
    J Chromatogr A; 1999 Jun; 847(1-2):75-81. PubMed ID: 10431353
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phenolic contents and compositions in skins of red wine grape cultivars among various genetic backgrounds and originations.
    Zhu L; Zhang Y; Lu J
    Int J Mol Sci; 2012; 13(3):3492-3510. PubMed ID: 22489164
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of genetic and vintage factors in flavan-3-ol composition of grape seeds of a segregating Vitis vinifera population.
    Hernández MM; Song S; Menéndez CM
    J Sci Food Agric; 2017 Jan; 97(1):236-243. PubMed ID: 26992139
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pomace limits tannin retention in Frontenac wines.
    Nicolle P; Marcotte C; Angers P; Pedneault K
    Food Chem; 2019 Mar; 277():438-447. PubMed ID: 30502168
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Acetaldehyde released by Lactobacillus plantarum enhances accumulation of pyranoanthocyanins in wine during malolactic fermentation.
    Wang S; Li S; Zhao H; Gu P; Chen Y; Zhang B; Zhu B
    Food Res Int; 2018 Jun; 108():254-263. PubMed ID: 29735055
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Changes in the levels of headspace volatiles, including acetaldehyde and formaldehyde, in red and white wine following light irradiation.
    Kim SH; Jung HJ; Lee JH
    J Food Sci; 2021 Mar; 86(3):834-841. PubMed ID: 33580549
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Red wine phenolic complexes and their in vitro antioxidant activity.
    Sun B; Spranger I; Yang J; Leandro C; Guo L; Canário S; Zhao Y; Wu C
    J Agric Food Chem; 2009 Sep; 57(18):8623-7. PubMed ID: 19715276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.