BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36096027)

  • 1. Biofilm-responsive encapsulated-phage coating for autonomous biofouling mitigation in water storage systems.
    Zuo P; Metz J; Yu P; Alvarez PJJ
    Water Res; 2022 Oct; 224():119070. PubMed ID: 36096027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacteriophage Treatment before Chemical Disinfection Can Enhance Removal of Plastic-Surface-Associated Pseudomonas aeruginosa.
    Stachler E; Kull A; Julian TR
    Appl Environ Microbiol; 2021 Sep; 87(20):e0098021. PubMed ID: 34347517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Going Viral: Emerging Opportunities for Phage-Based Bacterial Control in Water Treatment and Reuse.
    Mathieu J; Yu P; Zuo P; Da Silva MLB; Alvarez PJJ
    Acc Chem Res; 2019 Apr; 52(4):849-857. PubMed ID: 30925037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hormetic Promotion of Biofilm Growth by Polyvalent Bacteriophages at Low Concentrations.
    Zhang B; Yu P; Wang Z; Alvarez PJJ
    Environ Sci Technol; 2020 Oct; 54(19):12358-12365. PubMed ID: 32886494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofilm Control in Flow-Through Systems Using Polyvalent Phages Delivered by Peptide-Modified M13 Coliphages with Enhanced Polysaccharide Affinity.
    Sun R; Yu P; Zuo P; Villagrán D; Mathieu J; Alvarez PJJ
    Environ Sci Technol; 2022 Dec; 56(23):17177-17187. PubMed ID: 36413403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occurrence and characterisation of biofilms in drinking water systems of broiler houses.
    Maes S; Vackier T; Nguyen Huu S; Heyndrickx M; Steenackers H; Sampers I; Raes K; Verplaetse A; De Reu K
    BMC Microbiol; 2019 Apr; 19(1):77. PubMed ID: 30987581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biofouling and me: My Stockholm syndrome with biofilms.
    Flemming HC
    Water Res; 2020 Apr; 173():115576. PubMed ID: 32044598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlorine and Monochloramine Disinfection of
    Buse HY; J Morris B; Struewing IT; Szabo JG
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antibiofilm Efficacy of the Pseudomonas aeruginosa Pbunavirus vB_PaeM-SMS29 Loaded onto Dissolving Polyvinyl Alcohol Microneedles.
    Sillankorva S; Pires L; Pastrana LM; Bañobre-López M
    Viruses; 2022 May; 14(5):. PubMed ID: 35632706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection of Bacteriophages to Control In Vitro 24 h Old Biofilm of
    Magin V; Garrec N; Andrés Y
    Viruses; 2019 Aug; 11(8):. PubMed ID: 31412645
    [No Abstract]   [Full Text] [Related]  

  • 11. Bacteriophage-based strategies for biofouling control in ultrafiltration: In situ biofouling mitigation, biocidal additives and biofilm cleanser.
    Ma W; Panecka M; Tufenkji N; Rahaman MS
    J Colloid Interface Sci; 2018 Aug; 523():254-265. PubMed ID: 29626763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biofilm control with natural and genetically-modified phages.
    Motlagh AM; Bhattacharjee AS; Goel R
    World J Microbiol Biotechnol; 2016 Apr; 32(4):67. PubMed ID: 26931607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Bacteriophages against Biofilms of
    Brás A; Braz M; Martinho I; Duarte J; Pereira C; Almeida A
    Microorganisms; 2024 Feb; 12(2):. PubMed ID: 38399770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response of Simulated Drinking Water Biofilm Mechanical and Structural Properties to Long-Term Disinfectant Exposure.
    Shen Y; Huang C; Monroy GL; Janjaroen D; Derlon N; Lin J; Espinosa-Marzal R; Morgenroth E; Boppart SA; Ashbolt NJ; Liu WT; Nguyen TH
    Environ Sci Technol; 2016 Feb; 50(4):1779-87. PubMed ID: 26756120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of disinfectant on bacterial antibiotic resistance transfer between biofilm and tap water in a simulated distribution network.
    Zhang J; Li W; Chen J; Wang F; Qi W; Li Y
    Environ Pollut; 2019 Mar; 246():131-140. PubMed ID: 30537651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of chlorination and hydrodynamic shear stress on the persistence of bacteriophages associated with drinking water biofilms.
    Pelleieux S; Mathieu L; Block JC; Gantzer C; Bertrand I
    J Appl Microbiol; 2016 Oct; 121(4):1189-97. PubMed ID: 27452787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-species biofilms defined from drinking water microorganisms provide increased protection against chlorine disinfection.
    Schwering M; Song J; Louie M; Turner RJ; Ceri H
    Biofouling; 2013 Sep; 29(8):917-28. PubMed ID: 23879183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boron Doped Diamond as a Low Biofouling Material in Aquatic Environments: Assessment of
    Simcox LJ; Pereira RPA; Wellington EMH; Macpherson JV
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25024-25033. PubMed ID: 31260250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-Functional Surfaces Based on an Antifouling Polymer and a Natural Antibiofilm Molecule: Prevention of Biofilm Formation without Using Biocides.
    Zou Y; Lu K; Lin Y; Wu Y; Wang Y; Li L; Huang C; Zhang Y; Brash JL; Chen H; Yu Q
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45191-45200. PubMed ID: 34519474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lytic Bacteriophage as a Biomaterial to Prevent Biofilm Formation and Promote Neural Growth.
    Liu ZH; Chiang MT; Lin HY
    Tissue Eng Regen Med; 2022 Oct; 19(5):987-1000. PubMed ID: 35648339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.