BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 36096404)

  • 21. Isomerization of Commercially Important Carotenoids (Lycopene, β-Carotene, and Astaxanthin) by Natural Catalysts: Isothiocyanates and Polysulfides.
    Honda M; Kageyama H; Hibino T; Ichihashi K; Takada W; Goto M
    J Agric Food Chem; 2020 Mar; 68(10):3228-3237. PubMed ID: 32074447
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lycopene and beta-carotene decompose more rapidly than lutein and zeaxanthin upon exposure to various pro-oxidants in vitro.
    Siems WG; Sommerburg O; van Kuijk FJ
    Biofactors; 1999; 10(2-3):105-13. PubMed ID: 10609870
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Red yeasts and their carotenogenic enzymes for microbial carotenoid production.
    Watcharawipas A; Runguphan W
    FEMS Yeast Res; 2023 Jan; 23():. PubMed ID: 36513367
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vivo creation of plasmid pCRT01 and its use for the construction of carotenoid-producing Paracoccus spp. strains that grow efficiently on industrial wastes.
    Maj A; Dziewit L; Drewniak L; Garstka M; Krucon T; Piatkowska K; Gieczewska K; Czarnecki J; Furmanczyk E; Lasek R; Baj J; Bartosik D
    Microb Cell Fact; 2020 Jul; 19(1):141. PubMed ID: 32660485
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antioxidant activities of astaxanthin and related carotenoids.
    Naguib YM
    J Agric Food Chem; 2000 Apr; 48(4):1150-4. PubMed ID: 10775364
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [The character of the interaction of beta-carotene-15,15'-dioxygenase from rabbit small intestine with lycopene, 15,15'-dehydro-beta-carotene, lutein, and astaxanthine].
    Ershov IuV; Dmitrovskiĭ AA; Bykhovskiĭ VIa
    Biokhimiia; 1993 May; 58(5):733-9. PubMed ID: 8338885
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional Lycopene Cyclase (CruA) in Cyanobacterium, Arthrospira platensis NIES-39, and its Role in Carotenoid Synthesis.
    Sugiyama K; Ebisawa M; Yamada M; Nagashima Y; Suzuki H; Maoka T; Takaichi S
    Plant Cell Physiol; 2017 Apr; 58(4):831-838. PubMed ID: 28371918
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antioxidant Potential and Capacity of Microorganism-Sourced C
    Siziya IN; Hwang CY; Seo MJ
    Antioxidants (Basel); 2022 Sep; 11(10):. PubMed ID: 36290686
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Absorption and metabolism of dietary carotenoids.
    Nagao A
    Biofactors; 2011; 37(2):83-7. PubMed ID: 21488131
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioactivity and protective effects of natural carotenoids.
    Stahl W; Sies H
    Biochim Biophys Acta; 2005 May; 1740(2):101-7. PubMed ID: 15949675
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved Astaxanthin Production with
    Henke NA; Wendisch VF
    Mar Drugs; 2019 Oct; 17(11):. PubMed ID: 31683510
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stepwise pathway engineering to the biosynthesis of zeaxanthin, astaxanthin and capsanthin in rice endosperm.
    Ha SH; Kim JK; Jeong YS; You MK; Lim SH; Kim JK
    Metab Eng; 2019 Mar; 52():178-189. PubMed ID: 30503392
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic Engineering of Escherichia coli for Producing Astaxanthin as the Predominant Carotenoid.
    Lu Q; Bu YF; Liu JZ
    Mar Drugs; 2017 Sep; 15(10):. PubMed ID: 28937591
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxidation of carotenoids by heat and tobacco smoke.
    Hurst JS; Contreras JE; Siems WG; Van Kuijk FJ
    Biofactors; 2004; 20(1):23-35. PubMed ID: 15096658
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase.
    Yu B; Lydiate DJ; Young LW; Schäfer UA; Hannoufa A
    Transgenic Res; 2008 Aug; 17(4):573-85. PubMed ID: 17851775
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A lycopene β-cyclase/lycopene ε-cyclase/light-harvesting complex-fusion protein from the green alga Ostreococcus lucimarinus can be modified to produce α-carotene and β-carotene at different ratios.
    Blatt A; Bauch ME; Pörschke Y; Lohr M
    Plant J; 2015 May; 82(4):582-95. PubMed ID: 25759133
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dietary intake of carotenoids and their antioxidant and anti-inflammatory effects in cardiovascular care.
    Ciccone MM; Cortese F; Gesualdo M; Carbonara S; Zito A; Ricci G; De Pascalis F; Scicchitano P; Riccioni G
    Mediators Inflamm; 2013; 2013():782137. PubMed ID: 24489447
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of carotenoids biosynthesis pathway in Schizochytrium sp. and utilization in astaxanthin biosynthesis.
    Tang X; Man Y; Hu X; Xu X; Ren L
    Enzyme Microb Technol; 2022 May; 156():110018. PubMed ID: 35217215
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pathway Engineering Using Escherichia coli to Produce Commercialized Carotenoids.
    Harada H
    Adv Exp Med Biol; 2021; 1261():191-199. PubMed ID: 33783741
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Down-regulation of β-carotene hydroxylase increases β-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweetpotato.
    Kim SH; Ahn YO; Ahn MJ; Lee HS; Kwak SS
    Phytochemistry; 2012 Feb; 74():69-78. PubMed ID: 22154923
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.