BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 36096533)

  • 1. Selective targeting of GARP-LTGFβ axis in the tumor microenvironment augments PD-1 blockade via enhancing CD8
    Li A; Chang Y; Song NJ; Wu X; Chung D; Riesenberg BP; Velegraki M; Giuliani GD; Das K; Okimoto T; Kwon H; Chakravarthy KB; Bolyard C; Wang Y; He K; Gatti-Mays M; Das J; Yang Y; Gewirth DT; Ma Q; Carbone D; Li Z
    J Immunother Cancer; 2022 Sep; 10(9):. PubMed ID: 36096533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel anti-GARP antibody DS-1055a augments anti-tumor immunity by depleting highly suppressive GARP+ regulatory T cells.
    Satoh K; Kobayashi Y; Fujimaki K; Hayashi S; Ishida S; Sugiyama D; Sato T; Lim K; Miyamoto M; Kozuma S; Kadokura M; Wakita K; Hata M; Hirahara K; Amano M; Watanabe I; Okamoto A; Tuettenberg A; Jonuleit H; Tanemura A; Maruyama S; Agatsuma T; Wada T; Nishikawa H
    Int Immunol; 2021 Jul; 33(8):435-446. PubMed ID: 34235533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel GARP humanized mouse model for efficacy assessment of GARP-targeting therapies.
    Guo J; Niu Z; Lv R; Yuan J; Zhang Z; Guan X; Li D; Zhang H; Zhao A; Feng J; Liu D; Zhou X; Gong J
    Int Immunopharmacol; 2024 Mar; 130():111782. PubMed ID: 38442579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thrombin contributes to cancer immune evasion via proteolysis of platelet-bound GARP to activate LTGF-β.
    Metelli A; Wu BX; Riesenberg B; Guglietta S; Huck JD; Mills C; Li A; Rachidi S; Krieg C; Rubinstein MP; Gewirth DT; Sun S; Lilly MB; Wahlquist AH; Carbone DP; Yang Y; Liu B; Li Z
    Sci Transl Med; 2020 Jan; 12(525):. PubMed ID: 31915300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Platelets subvert T cell immunity against cancer via GARP-TGFβ axis.
    Rachidi S; Metelli A; Riesenberg B; Wu BX; Nelson MH; Wallace C; Paulos CM; Rubinstein MP; Garrett-Mayer E; Hennig M; Bearden DW; Yang Y; Liu B; Li Z
    Sci Immunol; 2017 May; 2(11):. PubMed ID: 28763790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exercise Training Improves Tumor Control by Increasing CD8
    Gomes-Santos IL; Amoozgar Z; Kumar AS; Ho WW; Roh K; Talele NP; Curtis H; Kawaguchi K; Jain RK; Fukumura D
    Cancer Immunol Res; 2021 Jul; 9(7):765-778. PubMed ID: 33839688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CD4
    Xiao M; Xie L; Cao G; Lei S; Wang P; Wei Z; Luo Y; Fang J; Yang X; Huang Q; Xu L; Guo J; Wen S; Wang Z; Wu Q; Tang J; Wang L; Chen X; Chen C; Zhang Y; Yao W; Ye J; He R; Huang J; Ye L
    J Immunother Cancer; 2022 May; 10(5):. PubMed ID: 35580929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cancer immunotherapy with PI3K and PD-1 dual-blockade via optimal modulation of T cell activation signal.
    Isoyama S; Mori S; Sugiyama D; Kojima Y; Tada Y; Shitara K; Hinohara K; Dan S; Nishikawa H
    J Immunother Cancer; 2021 Aug; 9(8):. PubMed ID: 34446575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oncolytic virus expressing PD-1 inhibitors activates a collaborative intratumoral immune response to control tumor and synergizes with CTLA-4 or TIM-3 blockade.
    Ju F; Luo Y; Lin C; Jia X; Xu Z; Tian R; Lin Y; Zhao M; Chang Y; Huang X; Li S; Ren W; Qin Y; Yu M; Jia J; Han J; Luo W; Zhang J; Fu G; Ye X; Huang C; Xia N
    J Immunother Cancer; 2022 Jun; 10(6):. PubMed ID: 35688558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective inhibition of TGF-β1 produced by GARP-expressing Tregs overcomes resistance to PD-1/PD-L1 blockade in cancer.
    de Streel G; Bertrand C; Chalon N; Liénart S; Bricard O; Lecomte S; Devreux J; Gaignage M; De Boeck G; Mariën L; Van De Walle I; van der Woning B; Saunders M; de Haard H; Vermeersch E; Maes W; Deckmyn H; Coulie PG; van Baren N; Lucas S
    Nat Commun; 2020 Sep; 11(1):4545. PubMed ID: 32917858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manipulating the Wnt/β-catenin signaling pathway to promote anti-tumor immune infiltration into the TME to sensitize ovarian cancer to ICB therapy.
    Wall JA; Meza-Perez S; Scalise CB; Katre A; Londoño AI; Turbitt WJ; Randall T; Norian LA; Arend RC
    Gynecol Oncol; 2021 Jan; 160(1):285-294. PubMed ID: 33168307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination of ultrasound-based mechanical disruption of tumor with immune checkpoint blockade modifies tumor microenvironment and augments systemic antitumor immunity.
    Abe S; Nagata H; Crosby EJ; Inoue Y; Kaneko K; Liu CX; Yang X; Wang T; Acharya CR; Agarwal P; Snyder J; Gwin W; Morse MA; Zhong P; Lyerly HK; Osada T
    J Immunother Cancer; 2022 Jan; 10(1):. PubMed ID: 35039461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive antitumor immune response stimulated by bio-nanoparticle based vaccine and checkpoint blockade.
    Bai X; Zhou Y; Yokota Y; Matsumoto Y; Zhai B; Maarouf N; Hayashi H; Carlson R; Zhang S; Sousa A; Sun B; Ghanbari H; Dong X; Wands JR
    J Exp Clin Cancer Res; 2022 Apr; 41(1):132. PubMed ID: 35392977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CDK4/6 inhibition promotes immune infiltration in ovarian cancer and synergizes with PD-1 blockade in a B cell-dependent manner.
    Zhang QF; Li J; Jiang K; Wang R; Ge JL; Yang H; Liu SJ; Jia LT; Wang L; Chen BL
    Theranostics; 2020; 10(23):10619-10633. PubMed ID: 32929370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitizing tumors to anti-PD-1 therapy by promoting NK and CD8+ T cells via pharmacological activation of FOXO3.
    Chung YM; Khan PP; Wang H; Tsai WB; Qiao Y; Yu B; Larrick JW; Hu MC
    J Immunother Cancer; 2021 Dec; 9(12):. PubMed ID: 34887262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface Expression of TGFβ Docking Receptor GARP Promotes Oncogenesis and Immune Tolerance in Breast Cancer.
    Metelli A; Wu BX; Fugle CW; Rachidi S; Sun S; Zhang Y; Wu J; Tomlinson S; Howe PH; Yang Y; Garrett-Mayer E; Liu B; Li Z
    Cancer Res; 2016 Dec; 76(24):7106-7117. PubMed ID: 27913437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of stearoyl-CoA desaturase 1 (SCD1) enhances the antitumor T cell response through regulating β-catenin signaling in cancer cells and ER stress in T cells and synergizes with anti-PD-1 antibody.
    Katoh Y; Yaguchi T; Kubo A; Iwata T; Morii K; Kato D; Ohta S; Satomi R; Yamamoto Y; Oyamada Y; Ouchi K; Takahashi S; Ishioka C; Matoba R; Suematsu M; Kawakami Y
    J Immunother Cancer; 2022 Jul; 10(7):. PubMed ID: 35793868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversing T-cell Exhaustion in Cancer: Lessons Learned from PD-1/PD-L1 Immune Checkpoint Blockade.
    Budimir N; Thomas GD; Dolina JS; Salek-Ardakani S
    Cancer Immunol Res; 2022 Feb; 10(2):146-153. PubMed ID: 34937730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insight into GARP striking role in cancer progression: application for cancer therapy.
    Lahimchi MR; Eslami M; Yousefi B
    Med Oncol; 2022 Dec; 40(1):33. PubMed ID: 36460874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective inhibition of TGFβ1 activation overcomes primary resistance to checkpoint blockade therapy by altering tumor immune landscape.
    Martin CJ; Datta A; Littlefield C; Kalra A; Chapron C; Wawersik S; Dagbay KB; Brueckner CT; Nikiforov A; Danehy FT; Streich FC; Boston C; Simpson A; Jackson JW; Lin S; Danek N; Faucette RR; Raman P; Capili AD; Buckler A; Carven GJ; Schürpf T
    Sci Transl Med; 2020 Mar; 12(536):. PubMed ID: 32213632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.