These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36096671)

  • 1. Effort Reinforces Learning.
    Jarvis H; Stevenson I; Huynh AQ; Babbage E; Coxon J; Chong TT
    J Neurosci; 2022 Oct; 42(40):7648-7658. PubMed ID: 36096671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dopamine-Dependent Loss Aversion during Effort-Based Decision-Making.
    Chen X; Voets S; Jenkinson N; Galea JM
    J Neurosci; 2020 Jan; 40(3):661-670. PubMed ID: 31727795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Causal Inference Gates Corticostriatal Learning.
    Dorfman HM; Tomov MS; Cheung B; Clarke D; Gershman SJ; Hughes BL
    J Neurosci; 2021 Aug; 41(32):6892-6904. PubMed ID: 34244363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The contribution of striatal pseudo-reward prediction errors to value-based decision-making.
    Mas-Herrero E; Sescousse G; Cools R; Marco-Pallarés J
    Neuroimage; 2019 Jun; 193():67-74. PubMed ID: 30851446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward-based decision making.
    Schönberg T; Daw ND; Joel D; O'Doherty JP
    J Neurosci; 2007 Nov; 27(47):12860-7. PubMed ID: 18032658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopamine Manipulation Affects Response Vigor Independently of Opportunity Cost.
    Zénon A; Devesse S; Olivier E
    J Neurosci; 2016 Sep; 36(37):9516-25. PubMed ID: 27629704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dose-response effects of d-amphetamine on effort-based decision-making and reinforcement learning.
    Soder HE; Cooper JA; Lopez-Gamundi P; Hoots JK; Nunez C; Lawlor VM; Lane SD; Treadway MT; Wardle MC
    Neuropsychopharmacology; 2021 May; 46(6):1078-1085. PubMed ID: 32722661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct effects of apathy and dopamine on effort-based decision-making in Parkinson's disease.
    Le Heron C; Plant O; Manohar S; Ang YS; Jackson M; Lennox G; Hu MT; Husain M
    Brain; 2018 May; 141(5):1455-1469. PubMed ID: 29672668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reward prediction errors, not sensory prediction errors, play a major role in model selection in human reinforcement learning.
    Wu Y; Morita M; Izawa J
    Neural Netw; 2022 Oct; 154():109-121. PubMed ID: 35872516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An association between prediction errors and risk-seeking: Theory and behavioral evidence.
    Moeller M; Grohn J; Manohar S; Bogacz R
    PLoS Comput Biol; 2021 Jul; 17(7):e1009213. PubMed ID: 34270552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association of Neural and Emotional Impacts of Reward Prediction Errors With Major Depression.
    Rutledge RB; Moutoussis M; Smittenaar P; Zeidman P; Taylor T; Hrynkiewicz L; Lam J; Skandali N; Siegel JZ; Ousdal OT; Prabhu G; Dayan P; Fonagy P; Dolan RJ
    JAMA Psychiatry; 2017 Aug; 74(8):790-797. PubMed ID: 28678984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Credit Assignment in a Motor Decision Making Task Is Influenced by Agency and Not Sensory Prediction Errors.
    Parvin DE; McDougle SD; Taylor JA; Ivry RB
    J Neurosci; 2018 May; 38(19):4521-4530. PubMed ID: 29650698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EEG correlates of physical effort and reward processing during reinforcement learning.
    Palidis DJ; Gribble PL
    J Neurophysiol; 2020 Aug; 124(2):610-622. PubMed ID: 32727262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural basis of reinforcement learning and decision making.
    Lee D; Seo H; Jung MW
    Annu Rev Neurosci; 2012; 35():287-308. PubMed ID: 22462543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reward-Mediated, Model-Free Reinforcement-Learning Mechanisms in Pavlovian and Instrumental Tasks Are Related.
    Moin Afshar N; Cinotti F; Martin D; Khamassi M; Calu DJ; Taylor JR; Groman SM
    J Neurosci; 2023 Jan; 43(3):458-471. PubMed ID: 36216504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How we learn to make decisions: rapid propagation of reinforcement learning prediction errors in humans.
    Krigolson OE; Hassall CD; Handy TC
    J Cogn Neurosci; 2014 Mar; 26(3):635-44. PubMed ID: 24168216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signed Reward Prediction Errors in the Ventral Striatum Drive Episodic Memory.
    Calderon CB; De Loof E; Ergo K; Snoeck A; Boehler CN; Verguts T
    J Neurosci; 2021 Feb; 41(8):1716-1726. PubMed ID: 33334870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetric effects of acute stress on cost and benefit learning.
    Voulgaropoulou SD; Fauzani F; Pfirrmann J; Vingerhoets C; van Amelsvoort T; Hernaus D
    Psychoneuroendocrinology; 2022 Apr; 138():105646. PubMed ID: 35065334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beta Oscillations in Monkey Striatum Encode Reward Prediction Error Signals.
    Basanisi R; Marche K; Combrisson E; Apicella P; Brovelli A
    J Neurosci; 2023 May; 43(18):3339-3352. PubMed ID: 37015808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cognitive flexibility in adolescence: neural and behavioral mechanisms of reward prediction error processing in adaptive decision making during development.
    Hauser TU; Iannaccone R; Walitza S; Brandeis D; Brem S
    Neuroimage; 2015 Jan; 104():347-54. PubMed ID: 25234119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.