These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 36097174)
1. Mechanisms underlying the inhibitory effects of linalool on Aspergillus flavus spore germination. Li YN; Zhang SB; Lv YY; Zhai HC; Cai JP; Hu YS Appl Microbiol Biotechnol; 2022 Oct; 106(19-20):6625-6640. PubMed ID: 36097174 [TBL] [Abstract][Full Text] [Related]
2. Transcriptomics analyses and biochemical characterization of Aspergillus flavus spores exposed to 1-nonanol. Qin YL; Zhang SB; Lv YY; Zhai HC; Hu YS; Cai JP Appl Microbiol Biotechnol; 2022 Mar; 106(5-6):2091-2106. PubMed ID: 35179628 [TBL] [Abstract][Full Text] [Related]
3. Antifungal effects of carvacrol, the main volatile compound in Origanum vulgare L. essential oil, against Aspergillus flavus in postharvest wheat. Duan WY; Zhu XM; Zhang SB; Lv YY; Zhai HC; Wei S; Ma PA; Hu YS Int J Food Microbiol; 2024 Jan; 410():110514. PubMed ID: 38070224 [TBL] [Abstract][Full Text] [Related]
4. The antifungal mechanisms of plant volatile compound 1-octanol against Aspergillus flavus growth. Qin YL; Zhang SB; Lv YY; Zhai HC; Hu YS; Cai JP Appl Microbiol Biotechnol; 2022 Aug; 106(13-16):5179-5196. PubMed ID: 35779097 [TBL] [Abstract][Full Text] [Related]
5. Transcriptome analysis reveals the underlying mechanism of heptanal against Aspergillus flavus spore germination. Li SF; Zhang SB; Lv YY; Zhai HC; Hu YS; Cai JP Appl Microbiol Biotechnol; 2022 Feb; 106(3):1241-1255. PubMed ID: 35075519 [TBL] [Abstract][Full Text] [Related]
6. Transcriptomic and biochemical analyses revealed antifungal mechanism of trans-anethole on Aspergillus flavus growth. Lei JD; Li Q; Zhang SB; Lv YY; Zhai HC; Wei S; Ma PA; Hu YS Appl Microbiol Biotechnol; 2023 Dec; 107(23):7213-7230. PubMed ID: 37733053 [TBL] [Abstract][Full Text] [Related]
7. Hexanal induces early apoptosis of Aspergillus flavus conidia by disrupting mitochondrial function and expression of key genes. Li SF; Zhang SB; Zhai HC; Lv YY; Hu YS; Cai JP Appl Microbiol Biotechnol; 2021 Sep; 105(18):6871-6886. PubMed ID: 34477940 [TBL] [Abstract][Full Text] [Related]
8. Terpinen-4-ol from tea tree oil prevents Aspergillus flavus growth in postharvest wheat grain. Ren J; Wang YM; Zhang SB; Lv YY; Zhai HC; Wei S; Ma PA; Hu YS Int J Food Microbiol; 2024 Jun; 418():110741. PubMed ID: 38733636 [TBL] [Abstract][Full Text] [Related]
9. ( E)-2-Hexenal, as a Potential Natural Antifungal Compound, Inhibits Aspergillus flavus Spore Germination by Disrupting Mitochondrial Energy Metabolism. Ma W; Zhao L; Zhao W; Xie Y J Agric Food Chem; 2019 Jan; 67(4):1138-1145. PubMed ID: 30614691 [TBL] [Abstract][Full Text] [Related]
10. Expression and purification of recombinant puroindoline A protein in Escherichia coli and its antifungal effect against Aspergillus flavus. Lv A; Li C; Tian P; Yuan W; Zhang S; Lv Y; Hu Y Appl Microbiol Biotechnol; 2019 Dec; 103(23-24):9515-9527. PubMed ID: 31720772 [TBL] [Abstract][Full Text] [Related]
11. Inhibitory effect and possible mechanism of phenyllactic acid on Aspergillus flavus spore germination. Li M; Yao B; Meng X J Basic Microbiol; 2022 Dec; 62(12):1457-1466. PubMed ID: 35925551 [TBL] [Abstract][Full Text] [Related]
12. Inhibitory effect of (E)-2-heptenal on Aspergillus flavus growth revealed by metabolomics and biochemical analyses. Duan WY; Zhang SB; Lv YY; Zhai HC; Wei S; Ma PA; Cai JP; Hu YS Appl Microbiol Biotechnol; 2023 Jan; 107(1):341-354. PubMed ID: 36477927 [TBL] [Abstract][Full Text] [Related]
13. Antifungal mechanism of 1-nonanol against Aspergillus flavus growth revealed by metabolomic analyses. Zhang SB; Qin YL; Li SF; Lv YY; Zhai HC; Hu YS; Cai JP Appl Microbiol Biotechnol; 2021 Oct; 105(20):7871-7888. PubMed ID: 34550439 [TBL] [Abstract][Full Text] [Related]
14. Investigations on the antifungal effect of nerol against Aspergillus flavus causing food spoilage. Tian J; Zeng X; Zeng H; Feng Z; Miao X; Peng X ScientificWorldJournal; 2013; 2013():230795. PubMed ID: 24453813 [TBL] [Abstract][Full Text] [Related]
15. Sub3 inhibits Aspergillus flavus growth by disrupting mitochondrial energy metabolism, and has potential biocontrol during peanut storage. Zhang W; Lv Y; Lv A; Wei S; Zhang S; Li C; Hu Y J Sci Food Agric; 2021 Jan; 101(2):486-496. PubMed ID: 32643802 [TBL] [Abstract][Full Text] [Related]
16. Mechanism of inactivation of Aspergillus flavus spores by dielectric barrier discharge plasma. Wang Y; Yu M; Xie Y; Ma W; Sun S; Li Q; Yang Y; Li X; Jia H; Zhao R Toxicon; 2024 Feb; 239():107615. PubMed ID: 38219915 [TBL] [Abstract][Full Text] [Related]
17. Antifungal activity of puroindoline protein from soft wheat against grain molds and its potential as a biocontrol agent. Tian PP; Lv YY; Wei S; Zhang SB; Zheng XT; Hu YS Lett Appl Microbiol; 2022 Jul; 75(1):114-125. PubMed ID: 35298847 [TBL] [Abstract][Full Text] [Related]
18. Biocontrol activity of volatile organic compounds from Streptomyces alboflavus TD-1 against Aspergillus flavus growth and aflatoxin production. Yang M; Lu L; Pang J; Hu Y; Guo Q; Li Z; Wu S; Liu H; Wang C J Microbiol; 2019 May; 57(5):396-404. PubMed ID: 31062286 [TBL] [Abstract][Full Text] [Related]
19. Effects of citral on Aspergillus flavus spores by quasi-elastic light scattering and multiplex microanalysis techniques. Luo M; Jiang LK; Huang YX; Xiao M; Li B; Zou GL Acta Biochim Biophys Sin (Shanghai); 2004 Apr; 36(4):277-83. PubMed ID: 15253153 [TBL] [Abstract][Full Text] [Related]
20. Transcriptional Stages of Conidia Germination and Associated Genes in Li C; Jia S; Rajput SA; Qi D; Wang S Toxins (Basel); 2022 Aug; 14(8):. PubMed ID: 36006223 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]