These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 36097325)

  • 1. Enhancing Auxiliary-Mediated Native Chemical Ligation at Challenging Junctions with Pyridine Scaffolds.
    Trunschke S; Piemontese E; Fuchs O; Abboud S; Seitz O
    Chemistry; 2022 Dec; 28(68):e202202065. PubMed ID: 36097325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enabling Cysteine-Free Native Chemical Ligation at Challenging Junctions with a Ligation Auxiliary Capable of Base Catalysis.
    Fuchs O; Trunschke S; Hanebrink H; Reimann M; Seitz O
    Angew Chem Int Ed Engl; 2021 Aug; 60(35):19483-19490. PubMed ID: 34165893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Type of Auxiliary for Native Chemical Peptide Ligation beyond Cysteine and Glycine Junctions.
    Loibl SF; Harpaz Z; Seitz O
    Angew Chem Int Ed Engl; 2015 Dec; 54(50):15055-9. PubMed ID: 26545341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Native chemical ligation at a base-labile 4-mercaptobutyrate N(α)-auxiliary.
    Harpaz Z; Loibl S; Seitz O
    Bioorg Med Chem Lett; 2016 Mar; 26(5):1434-7. PubMed ID: 26838809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Total chemical synthesis of proteins without HPLC purification.
    Loibl SF; Harpaz Z; Zitterbart R; Seitz O
    Chem Sci; 2016 Nov; 7(11):6753-6759. PubMed ID: 28451120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Features of Auxiliaries That Enable Native Chemical Ligation beyond Glycine and Cleavage via Radical Fragmentation.
    Loibl SF; Dallmann A; Hennig K; Juds C; Seitz O
    Chemistry; 2018 Mar; 24(14):3623-3633. PubMed ID: 29334413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Native chemical ligation with Nalpha acyl transfer auxiliaries.
    Offer J
    Biopolymers; 2010; 94(4):530-41. PubMed ID: 20593473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Native Chemical Ligation via N-Acylurea Thioester Surrogates Obtained by Fmoc Solid-Phase Peptide Synthesis.
    Palà-Pujadas J; Blanco-Canosa JB
    Methods Mol Biol; 2020; 2133():141-161. PubMed ID: 32144666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-Terminal Proline Editing for the Synthesis of Peptides with Mercaptoproline and Selenoproline: Mechanistic Insights Lead to Greater Efficiency in Proline Native Chemical Ligation.
    Ludwig BA; Forbes CR; Zondlo NJ
    ACS Chem Biol; 2024 Feb; 19(2):536-550. PubMed ID: 38324914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Traceless chemical ligation from S-, O-, and N-acyl isopeptides.
    Panda SS; Hall CD; Oliferenko AA; Katritzky AR
    Acc Chem Res; 2014 Apr; 47(4):1076-87. PubMed ID: 24617996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polypeptide Preparation by β-Lactone-Mediated Chemical Ligation.
    Fan X; Wen Y; Chen H; Tian B; Zhang Q
    Org Lett; 2024 Jul; 26(26):5436-5440. PubMed ID: 38900935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Templated native chemical ligation: peptide chemistry beyond protein synthesis.
    Vázquez O; Seitz O
    J Pept Sci; 2014 Feb; 20(2):78-86. PubMed ID: 24395765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing native chemical ligation for challenging chemical protein syntheses.
    Giesler RJ; Erickson PW; Kay MS
    Curr Opin Chem Biol; 2020 Oct; 58():37-44. PubMed ID: 32745915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligation-desulfurization: a powerful combination in the synthesis of peptides and glycopeptides.
    Rohde H; Seitz O
    Biopolymers; 2010; 94(4):551-9. PubMed ID: 20593472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extending synthetic access to proteins with a removable acyl transfer auxiliary.
    Offer J; Boddy CN; Dawson PE
    J Am Chem Soc; 2002 May; 124(17):4642-6. PubMed ID: 11971712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox-Controlled Chemical Protein Synthesis: Sundry Shades of Latency.
    Agouridas V; Ollivier N; Vicogne J; Diemer V; Melnyk O
    Acc Chem Res; 2022 Sep; 55(18):2685-2697. PubMed ID: 36083810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic cysteine surrogates used in native chemical ligation.
    Wong CT; Tung CL; Li X
    Mol Biosyst; 2013 May; 9(5):826-33. PubMed ID: 23302767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An o-nitrobenzyl scaffold for peptide ligation: synthesis and applications.
    Marinzi C; Offer J; Longhi R; Dawson PE
    Bioorg Med Chem; 2004 May; 12(10):2749-57. PubMed ID: 15110856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards biomolecular assembly employing extended native chemical ligation in combination with thioester synthesis using an N-->S acyl shift.
    Ackrill T; Anderson DW; Macmillan D
    Biopolymers; 2010; 94(4):495-503. PubMed ID: 20593460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Making Ends Meet: Microwave-Accelerated Synthesis of Cyclic and Disulfide Rich Proteins Via In Situ Thioesterification and Native Chemical Ligation.
    Gunasekera S; Aboye TL; Madian WA; El-Seedi HR; Göransson U
    Int J Pept Res Ther; 2013 Mar; 19(1):43-54. PubMed ID: 23504256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.