These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 36097611)

  • 21. Modeling the effects of the governmental responses to COVID-19 on transit demand: The case of Athens, Greece.
    Giouroukelis M; Papagianni S; Tzivellou N; Vlahogianni EI; Golias JC
    Case Stud Transp Policy; 2022 Jun; 10(2):1069-1077. PubMed ID: 35371920
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding changing public transit travel patterns of urban visitors during COVID-19: A multi-stage study.
    Lin Y; Xu Y; Zhao Z; Park S; Su S; Ren M
    Travel Behav Soc; 2023 Jul; 32():100587. PubMed ID: 37153378
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impacts of COVID-19 and pandemic control measures on public transport ridership in European urban areas - The cases of Vienna, Innsbruck, Oslo, and Agder.
    Rasca S; Markvica K; Ivanschitz BP
    Transp Res Interdiscip Perspect; 2021 Jun; 10():100376. PubMed ID: 34514371
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On bus ridership and frequency.
    Berrebi SJ; Joshi S; Watkins KE
    Transp Res Part A Policy Pract; 2021 Jun; 148():140-154. PubMed ID: 36569980
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Data-driven analysis of the impact of COVID-19 on Madrid's public transport during each phase of the pandemic.
    Fernández Pozo R; Wilby MR; Vinagre Díaz JJ; Rodríguez González AB
    Cities; 2022 Aug; 127():103723. PubMed ID: 35530724
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sustainable mobility in auto-dominated Metro Boston: Challenges and opportunities post-COVID-19.
    Basu R; Ferreira J
    Transp Policy (Oxf); 2021 Mar; 103():197-210. PubMed ID: 36570707
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The TROLLEY Study: assessing travel, health, and equity impacts of a new light rail transit investment during the COVID-19 pandemic.
    Crist K; Benmarhnia T; Frank LD; Song D; Zunshine E; Sallis JF
    BMC Public Health; 2022 Aug; 22(1):1475. PubMed ID: 35918683
    [TBL] [Abstract][Full Text] [Related]  

  • 28. T-Ridership: A web tool for reprogramming public transportation fleets to minimize COVID-19 transmission.
    Imani S; Vahed M; Satodia S; Vahed M
    SoftwareX; 2023 May; 22():101350. PubMed ID: 36969748
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Examination of New York City Transit's Bus and Subway Ridership Trends During the COVID-19 Pandemic.
    Halvorsen A; Wood D; Jefferson D; Stasko T; Hui J; Reddy A
    Transp Res Rec; 2023 Apr; 2677(4):51-64. PubMed ID: 37153176
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigating spatio-temporal mobility patterns and changes in metro usage under the impact of COVID-19 using Taipei Metro smart card data.
    Mützel CM; Scheiner J
    Public Transp; 2022; 14(2):343-366. PubMed ID: 38624766
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatiotemporal behaviors of the ridership of a public transportation system during an epidemic outbreak: case of MERS in Seoul.
    Lee JH; Goh S; Kim JW; Lee K; Choi MY
    J Korean Phys Soc; 2021; 79(11):1069-1077. PubMed ID: 34720363
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temporal dynamics of public transportation ridership in Seoul before, during, and after COVID-19 from urban resilience perspective.
    Lee S; Kim J; Cho K
    Sci Rep; 2024 Apr; 14(1):8981. PubMed ID: 38637570
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mining urban sustainable performance: Spatio-temporal emission potential changes of urban transit buses in post-COVID-19 future.
    Sui Y; Zhang H; Shang W; Sun R; Wang C; Ji J; Song X; Shao F
    Appl Energy; 2020 Dec; 280():115966. PubMed ID: 33052166
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transit environments for physical activity: Relationship between micro-scale built environment features surrounding light rail stations and ridership in Houston, Texas.
    Lanza K; Oluyomi A; Durand C; Gabriel KP; Knell G; Hoelscher DM; Ranjit N; Salvo D; Walker TJ; Kohl HW
    J Transp Health; 2020 Dec; 19():100924. PubMed ID: 32904408
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ensuring equitable transportation for the disadvantaged: Paratransit usage by persons with disabilities during the COVID-19 pandemic.
    Wang Y; Shen Q; Abu Ashour L; Dannenberg AL
    Transp Res Part A Policy Pract; 2022 May; 159():84-95. PubMed ID: 36246189
    [TBL] [Abstract][Full Text] [Related]  

  • 36. COVID-19 mortality among Amalgamated Transit Union (ATU) and Transport Workers Union (TWU) workers-March-July 2020, New York City metro area.
    Tomasi SE; Ramirez-Cardenas A; Thiese MS; Rinsky JL; Chiu SK; Luckhaupt S; Bateman R; Burrer SL
    Am J Ind Med; 2021 Sep; 64(9):723-730. PubMed ID: 34346103
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving the subway attraction for the post-COVID-19 era: The role of fare-free public transport policy.
    Dai J; Liu Z; Li R
    Transp Policy (Oxf); 2021 Mar; 103():21-30. PubMed ID: 36570709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Examining the causal relationship between bike-share and public transit in response to the COVID-19 pandemic.
    Kim M; Cho GH
    Cities; 2022 Dec; 131():104024. PubMed ID: 36211221
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transit Rider Body Mass Index Before and After Completion of Street Light-Rail Line in Utah.
    Brown BB; Smith KR; Jensen WA; Tharp D
    Am J Public Health; 2017 Sep; 107(9):1484-1486. PubMed ID: 28727533
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrating COVID-19 health risks into crowding costs for transit schedule planning.
    Devasurendra KW; Saidi S; Wirasinghe SC; Kattan L
    Transp Res Interdiscip Perspect; 2022 Mar; 13():100522. PubMed ID: 34957387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.