These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 360977)
21. [Microbial reduction of iron, manganese as well as other metals and their individual significance in environmental bioremediation]. Zhu W; Lin X; Zhang Y Ying Yong Sheng Tai Xue Bao; 2002 Mar; 13(3):369-72. PubMed ID: 12132174 [TBL] [Abstract][Full Text] [Related]
22. Biological and health implications of toxic heavy metal and essential trace element interactions. Chowdhury BA; Chandra RK Prog Food Nutr Sci; 1987; 11(1):55-113. PubMed ID: 3303135 [TBL] [Abstract][Full Text] [Related]
23. Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus. I. Stoichiometry with compounds of arsenic, selenium, tellurium, transition and other elements. WOOLFOLK CA; WHITELEY HR J Bacteriol; 1962 Oct; 84(4):647-58. PubMed ID: 14001842 [TBL] [Abstract][Full Text] [Related]
24. The importance of trophic transfer in the bioaccumulation of chemical contaminants in aquatic ecosystems. Biddinger GR; Gloss SP Residue Rev; 1984; 91():103-45. PubMed ID: 6091200 [No Abstract] [Full Text] [Related]
25. Effects of acidification on the mobility of metals and metalloids: an overview. Wood JM Environ Health Perspect; 1985 Nov; 63():115-9. PubMed ID: 4076077 [TBL] [Abstract][Full Text] [Related]
26. A baseline study of levels of mercury, arsenic, cadmium and lead in Northeast Arctic cod (Gadus morhua) from different parts of the Barents Sea. Julshamn K; Duinker A; Nilsen BM; Frantzen S; Maage A; Valdersnes S; Nedreaas K Mar Pollut Bull; 2013 Feb; 67(1-2):187-95. PubMed ID: 23260646 [TBL] [Abstract][Full Text] [Related]
27. Exploiting heavy metal resistance systems in bioremediation. Silver S Res Microbiol; 1994 Jan; 145(1):61-7. PubMed ID: 7522335 [No Abstract] [Full Text] [Related]
28. Metabolism and metabolic action of lead and other heavy metals. Hammond PB Clin Toxicol; 1973; 6(3):353-65. PubMed ID: 4202151 [No Abstract] [Full Text] [Related]
29. Dramatic fluctuations in liver mass and metal content of eared grebes (Podiceps nigricollis) during autumnal migration. Rattner BA; Jehl JR Bull Environ Contam Toxicol; 1997 Sep; 59(3):337-43. PubMed ID: 9256384 [No Abstract] [Full Text] [Related]
30. Mechanisms of microbial resistance and detoxification of mercury and organomercury compounds: physiological, biochemical, and genetic analyses. Robinson JB; Tuovinen OH Microbiol Rev; 1984 Jun; 48(2):95-124. PubMed ID: 6377034 [No Abstract] [Full Text] [Related]
31. Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein. Kinoshita H; Sohma Y; Ohtake F; Ishida M; Kawai Y; Kitazawa H; Saito T; Kimura K Res Microbiol; 2013 Sep; 164(7):701-9. PubMed ID: 23603782 [TBL] [Abstract][Full Text] [Related]
32. Biological cycles for toxic elements in the environment. Wood JM Science; 1974 Mar; 183(4129):1049-52. PubMed ID: 4812035 [No Abstract] [Full Text] [Related]
33. Associations of toenail arsenic, cadmium, mercury, manganese, and lead with blood pressure in the normative aging study. Mordukhovich I; Wright RO; Hu H; Amarasiriwardena C; Baccarelli A; Litonjua A; Sparrow D; Vokonas P; Schwartz J Environ Health Perspect; 2012 Jan; 120(1):98-104. PubMed ID: 21878420 [TBL] [Abstract][Full Text] [Related]
34. Biotransformations of mercury compounds. Summers AO Basic Life Sci; 1988; 45():105-9. PubMed ID: 3052407 [No Abstract] [Full Text] [Related]
35. Production of volatile derivatives of metal(loid)s by microflora involved in anaerobic digestion of sewage sludge. Michalke K; Wickenheiser EB; Mehring M; Hirner AV; Hensel R Appl Environ Microbiol; 2000 Jul; 66(7):2791-6. PubMed ID: 10877769 [TBL] [Abstract][Full Text] [Related]
36. [Bacterial systems for expelling toxic metals]. Vargas E; Alvarez AH; Cervantes C Rev Latinoam Microbiol; 1998; 40(1-2):53-71. PubMed ID: 10932735 [TBL] [Abstract][Full Text] [Related]
37. Lung clearance, translocation, and acute toxicity of arsenic, beryllium, cadmium, cobalt, lead, selenium, vanadium, and ytterbium oxides following deposition in rat lung. Rhoads K; Sanders CL Environ Res; 1985 Apr; 36(2):359-78. PubMed ID: 3872210 [TBL] [Abstract][Full Text] [Related]
38. Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment. Barkay T; Wagner-Döbler I Adv Appl Microbiol; 2005; 57():1-52. PubMed ID: 16002008 [No Abstract] [Full Text] [Related]
39. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Islam FS; Gault AG; Boothman C; Polya DA; Charnock JM; Chatterjee D; Lloyd JR Nature; 2004 Jul; 430(6995):68-71. PubMed ID: 15229598 [TBL] [Abstract][Full Text] [Related]
40. Oxidative stress in pied flycatcher (Ficedula hypoleuca) nestlings from metal contaminated environments in northern Sweden. Berglund AM; Sturve J; Förlin L; Nyholm NE Environ Res; 2007 Nov; 105(3):330-9. PubMed ID: 17631289 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]