These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 36097700)
41. Adsorption behavior of hydrophobin and hydrophobin/surfactant mixtures at the solid-solution interface. Zhang XL; Penfold J; Thomas RK; Tucker IM; Petkov JT; Bent J; Cox A Langmuir; 2011 Sep; 27(17):10464-74. PubMed ID: 21797273 [TBL] [Abstract][Full Text] [Related]
42. Rheological Characterization of Mixed Surfactant Films at Droplet Interfaces via Micropipette Aspiration. Micklavzina BL; Luferov K; Longo ML Langmuir; 2018 Jul; 34(29):8560-8570. PubMed ID: 29950095 [TBL] [Abstract][Full Text] [Related]
43. Surfactant specific ionic strength effects on membrane fouling during produced water treatment. Dickhout JM; Virga E; Lammertink RGH; de Vos WM J Colloid Interface Sci; 2019 Nov; 556():12-23. PubMed ID: 31419735 [TBL] [Abstract][Full Text] [Related]
44. Reversing Coffee-Ring Effect by Laser-Induced Differential Evaporation. Yen TM; Fu X; Wei T; Nayak RU; Shi Y; Lo YH Sci Rep; 2018 Feb; 8(1):3157. PubMed ID: 29453347 [TBL] [Abstract][Full Text] [Related]
45. Surfactant effects on droplet dynamics and deposition patterns: a lattice gas model. Jung N; Seo HW; Leo PH; Kim J; Kim P; Yoo CS Soft Matter; 2017 Sep; 13(37):6529-6541. PubMed ID: 28895608 [TBL] [Abstract][Full Text] [Related]
46. Evaporation Dynamics of Surfactant-Laden Droplets on a Superhydrophobic Surface: Influence of Surfactant Concentration. Aldhaleai A; Tsai PA Langmuir; 2022 Jan; 38(1):593-601. PubMed ID: 34967641 [TBL] [Abstract][Full Text] [Related]
47. Acoustic suppression of the coffee-ring effect. Mampallil D; Reboud J; Wilson R; Wylie D; Klug DR; Cooper JM Soft Matter; 2015 Sep; 11(36):7207-13. PubMed ID: 26264649 [TBL] [Abstract][Full Text] [Related]
48. Evaporation of nanofluid droplets with applied DC potential. Orejon D; Sefiane K; Shanahan ME J Colloid Interface Sci; 2013 Oct; 407():29-38. PubMed ID: 23834991 [TBL] [Abstract][Full Text] [Related]
49. Cationic surfactant-directed structural control of NaCl crystals from evaporating sessile droplets. Dewangan JK; Basu N; Chowdhury M Soft Matter; 2021 Dec; 18(1):62-79. PubMed ID: 34878487 [TBL] [Abstract][Full Text] [Related]
51. Role of Surfactant in Evaporation and Deposition of Bisolvent Biopolymer Droplets. Kim DO; Rokoni A; Kaneelil P; Cui C; Han LH; Sun Y Langmuir; 2019 Oct; 35(39):12773-12781. PubMed ID: 31498639 [TBL] [Abstract][Full Text] [Related]
52. Surfactant-mediated control of colloid pattern assembly and attachment strength in evaporating droplets. Morales VL; Parlange JY; Wu M; Pérez-Reche FJ; Zhang W; Sang W; Steenhuis TS Langmuir; 2013 Feb; 29(6):1831-40. PubMed ID: 23327491 [TBL] [Abstract][Full Text] [Related]
54. Hierarchical Surface Patterns upon Evaporation of a ZnO Nanofluid Droplet: Effect of Particle Morphology. Wąsik P; Redeker C; Dane TG; Seddon AM; Wu H; Briscoe WH Langmuir; 2018 Jan; 34(4):1645-1654. PubMed ID: 29293357 [TBL] [Abstract][Full Text] [Related]
55. Wetting and evaporation behavior of dilute sodium dodecyl sulfate droplets on soft substrates under a direct current electric field. Jiang B; Xu S; Lu Y; Yu Y Sci Rep; 2024 Mar; 14(1):7334. PubMed ID: 38538843 [TBL] [Abstract][Full Text] [Related]
56. Evaporative Drying of Sodium Chloride Solution Droplet on a Thermally Controlled Substrate. Basu N; Mukherjee R J Phys Chem B; 2020 Feb; 124(7):1266-1274. PubMed ID: 31990551 [TBL] [Abstract][Full Text] [Related]