These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36097887)

  • 1. Electrophysiological measures of conflict and reward processing are associated with decisions to engage in physical effort.
    Umemoto A; Lin H; Holroyd CB
    Psychophysiology; 2023 Feb; 60(2):e14176. PubMed ID: 36097887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemogenetic Modulation and Single-Photon Calcium Imaging in Anterior Cingulate Cortex Reveal a Mechanism for Effort-Based Decisions.
    Hart EE; Blair GJ; O'Dell TJ; Blair HT; Izquierdo A
    J Neurosci; 2020 Jul; 40(29):5628-5643. PubMed ID: 32527984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiological indices of anterior cingulate cortex function reveal changing levels of cognitive effort and reward valuation that sustain task performance.
    Umemoto A; Inzlicht M; Holroyd CB
    Neuropsychologia; 2019 Feb; 123():67-76. PubMed ID: 29908953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural Signatures of Value Comparison in Human Cingulate Cortex during Decisions Requiring an Effort-Reward Trade-off.
    Klein-Flügge MC; Kennerley SW; Friston K; Bestmann S
    J Neurosci; 2016 Sep; 36(39):10002-15. PubMed ID: 27683898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of Ventromedial Prefrontal Cortex and Anterior Cingulate in Subjective Valuation of Prospective Effort.
    Hogan PS; Galaro JK; Chib VS
    Cereb Cortex; 2019 Sep; 29(10):4277-4290. PubMed ID: 30541111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophysiological measures reveal the role of anterior cingulate cortex in learning from unreliable feedback.
    Li P; Peng W; Li H; Holroyd CB
    Cogn Affect Behav Neurosci; 2018 Oct; 18(5):949-963. PubMed ID: 29992483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociable contributions of anterior cingulate cortex and basolateral amygdala on a rodent cost/benefit decision-making task of cognitive effort.
    Hosking JG; Cocker PJ; Winstanley CA
    Neuropsychopharmacology; 2014 Jun; 39(7):1558-67. PubMed ID: 24496320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anterior Cingulate Cortex Lesions Abolish Budget Effects on Effort-Based Decision-Making in Rat Consumers.
    Hu Y; van Wingerden M; Sellitto M; Schäble S; Kalenscher T
    J Neurosci; 2021 May; 41(20):4448-4460. PubMed ID: 33753545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-trial coupling of EEG and fMRI reveals the involvement of early anterior cingulate cortex activation in effortful decision making.
    Mulert C; Seifert C; Leicht G; Kirsch V; Ertl M; Karch S; Moosmann M; Lutz J; Möller HJ; Hegerl U; Pogarell O; Jäger L
    Neuroimage; 2008 Aug; 42(1):158-68. PubMed ID: 18547820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional specialization within medial frontal cortex of the anterior cingulate for evaluating effort-related decisions.
    Walton ME; Bannerman DM; Alterescu K; Rushworth MF
    J Neurosci; 2003 Jul; 23(16):6475-9. PubMed ID: 12878688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prefrontostriatal circuitry regulates effort-related decision making.
    Hauber W; Sommer S
    Cereb Cortex; 2009 Oct; 19(10):2240-7. PubMed ID: 19131436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Individual Neurons in the Cingulate Cortex Encode Action Monitoring, Not Selection, during Adaptive Decision-Making.
    Li YS; Nassar MR; Kable JW; Gold JI
    J Neurosci; 2019 Aug; 39(34):6668-6683. PubMed ID: 31217329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional connectivity between anterior cingulate cortex and orbitofrontal cortex during value-based decision making.
    Fatahi Z; Haghparast A; Khani A; Kermani M
    Neurobiol Learn Mem; 2018 Jan; 147():74-78. PubMed ID: 29191756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dopamine D1 receptors in the anterior cingulate cortex regulate effort-based decision making.
    Schweimer J; Hauber W
    Learn Mem; 2006; 13(6):777-82. PubMed ID: 17142306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissociating contributions of ACC and vmPFC in reward prediction, outcome, and choice.
    Vassena E; Krebs RM; Silvetti M; Fias W; Verguts T
    Neuropsychologia; 2014 Jul; 59():112-23. PubMed ID: 24813149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct portions of anterior cingulate cortex and medial prefrontal cortex are activated by reward processing in separable phases of decision-making cognition.
    Rogers RD; Ramnani N; Mackay C; Wilson JL; Jezzard P; Carter CS; Smith SM
    Biol Psychiatry; 2004 Mar; 55(6):594-602. PubMed ID: 15013828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural synchronization between the anterior cingulate and orbitofrontal cortices during effort-based decision making.
    Fatahi Z; Ghorbani A; Ismail Zibaii M; Haghparast A
    Neurobiol Learn Mem; 2020 Nov; 175():107320. PubMed ID: 33010385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Task-level value affects trial-level reward processing.
    Hassall CD; Hunt LT; Holroyd CB
    Neuroimage; 2022 Oct; 260():119456. PubMed ID: 35809889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amygdala-prefrontal cortical circuitry regulates effort-based decision making.
    Floresco SB; Ghods-Sharifi S
    Cereb Cortex; 2007 Feb; 17(2):251-60. PubMed ID: 16495432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anterior cingulate cortex encoding of effortful behavior.
    Porter BS; Hillman KL; Bilkey DK
    J Neurophysiol; 2019 Feb; 121(2):701-714. PubMed ID: 30625016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.