BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36098230)

  • 1. Volatile fingerprints of different parts of Chongming saffron (Crocus sativus) flowers by headspace-gas chromatography-ion mobility spectrometry and in vitro bioactive properties of the saffron tepals.
    Yao L; Guo S; Wang H; Feng T; Sun M; Song S; Hou F
    J Food Sci; 2022 Oct; 87(10):4491-4503. PubMed ID: 36098230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increasing the applications of Crocus sativus flowers as natural antioxidants.
    Serrano-Díaz J; Sánchez AM; Maggi L; Martínez-Tomé M; García-Diz L; Murcia MA; Alonso GL
    J Food Sci; 2012 Nov; 77(11):C1162-8. PubMed ID: 23057806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrimination of Different Parts of Saffron by Metabolomic-Based Ultra-Performance Liquid Chromatography Coupled with High-Definition Mass Spectrometry.
    Xu S; Ge X; Li S; Guo X; Dai D; Yang T
    Chem Biodivers; 2019 Oct; 16(10):e1900363. PubMed ID: 31385642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimisation of the enzyme-assisted extraction of polyphenols from saffron (Crocus sativus L.) petals.
    Vardakas AT; Shikov VT; Dinkova RH; Mihalev KM
    Acta Sci Pol Technol Aliment; 2021; 20(3):359-367. PubMed ID: 34304553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive Extraction and Chemical Characterization of Bioactive Compounds in Tepals of
    Ruggieri F; Maggi MA; Rossi M; Consonni R
    Molecules; 2023 Aug; 28(16):. PubMed ID: 37630227
    [No Abstract]   [Full Text] [Related]  

  • 6. Integrated analytical methodology to investigate bioactive compounds in Crocus sativus L. flowers.
    Cusano E; Consonni R; Petrakis EA; Astraka K; Cagliani LR; Polissiou MG
    Phytochem Anal; 2018 Sep; 29(5):476-486. PubMed ID: 29484754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive chemotaxonomic analysis of saffron crocus tepal and stamen samples, as raw materials with potential antidepressant activity.
    Mottaghipisheh J; Mahmoodi Sourestani M; Kiss T; Horváth A; Tóth B; Ayanmanesh M; Khamushi A; Csupor D
    J Pharm Biomed Anal; 2020 May; 184():113183. PubMed ID: 32105944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Insight into the Volatile Profile and Antioxidant Properties of
    Cerdá-Bernad D; Clemente-Villalba J; Valero-Cases E; Pastor JJ; Frutos MJ
    Antioxidants (Basel); 2022 Aug; 11(9):. PubMed ID: 36139726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radical scavenging activity and LC-MS metabolic profiling of petals, stamens, and flowers of Crocus sativus L.
    Montoro P; Maldini M; Luciani L; Tuberoso CI; Congiu F; Pizza C
    J Food Sci; 2012 Aug; 77(8):C893-900. PubMed ID: 22809329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of safranal as the main allelochemical from saffron (Crocus sativus).
    Mardani H; Sekine T; Azizi M; Mishyna M; Fujii Y
    Nat Prod Commun; 2015 May; 10(5):775-7. PubMed ID: 26058156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of Organic Acids in Saffron Stigmas (
    Jarukas L; Mykhailenko O; Baranauskaite J; Marksa M; Ivanauskas L
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32731562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioactivity and applications of saffron floral bio-residues (tepals): a natural by-product for the food, pharmaceutical, and cosmetic industries.
    Belyagoubi-Benhammou N; Belyagoubi L; Loukidi B; Mir MA; Assadpour E; Boudghene-Stambouli M; Kharazmi MS; Jafari SM
    Crit Rev Food Sci Nutr; 2023 Apr; ():1-15. PubMed ID: 37051933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Insight into Utilization of Flavonoid Glycosides and Biological Properties of Saffron (
    Sun C; Nile SH; Zhang Y; Qin L; El-Seedi HR; Daglia M; Kai G
    J Agric Food Chem; 2020 Sep; 68(39):10685-10696. PubMed ID: 32924469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of phenolic markers for saffron authenticity and origin: An untargeted metabolomics approach.
    Senizza B; Rocchetti G; Ghisoni S; Busconi M; De Los Mozos Pascual M; Fernandez JA; Lucini L; Trevisan M
    Food Res Int; 2019 Dec; 126():108584. PubMed ID: 31732022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Analysis of Native Crocus Taxa as a Great Source of Flavonoids with High Antioxidant Activity.
    Šola I; Stipaničev M; Vujčić V; Mitić B; Huđek A; Rusak G
    Plant Foods Hum Nutr; 2018 Sep; 73(3):189-195. PubMed ID: 29860648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical constituents and bioactivities of the liposoluble fraction from different medicinal parts of Crocus sativus.
    Zheng CJ; Li L; Ma WH; Han T; Qin LP
    Pharm Biol; 2011 Jul; 49(7):756-63. PubMed ID: 21639689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crocins with high levels of sugar conjugation contribute to the yellow colours of early-spring flowering crocus tepals.
    Rubio Moraga A; Ahrazem O; Rambla JL; Granell A; Gómez Gómez L
    PLoS One; 2013; 8(9):e71946. PubMed ID: 24058441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pattern recognition analysis of chromatographic fingerprints of Crocus sativus L. secondary metabolites towards source identification and quality control.
    Aliakbarzadeh G; Sereshti H; Parastar H
    Anal Bioanal Chem; 2016 May; 408(12):3295-307. PubMed ID: 26922339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid authentication of Chaenomeles species by visual volatile components fingerprints based on headspace gas chromatography-ion mobility spectrometry combined with chemometric analysis.
    Tian S; Guo H; Zhang M; Yan H; Wang X; Zhao H
    Phytochem Anal; 2022 Dec; 33(8):1198-1204. PubMed ID: 36028334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustainable Processing of Floral Bio-Residues of Saffron (
    Stelluti S; Caser M; Demasi S; Scariot V
    Plants (Basel); 2021 Mar; 10(3):. PubMed ID: 33799549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.