These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 3609846)

  • 21. The generalized epileptic spike-wave mechanism and the sleep-wakefulness system.
    Halász P
    Acta Physiol Acad Sci Hung; 1972; 42(3):293-314. PubMed ID: 4667812
    [No Abstract]   [Full Text] [Related]  

  • 22. The EEG effects of THIP (Gaboxadol) on sleep and waking are mediated by the GABA(A)delta-subunit-containing receptors.
    Winsky-Sommerer R; Vyazovskiy VV; Homanics GE; Tobler I
    Eur J Neurosci; 2007 Mar; 25(6):1893-9. PubMed ID: 17408425
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sleep-wakefulness effects after microinjections of hypocretin 1 (orexin A) in cholinoceptive areas of the cat oral pontine tegmentum.
    Moreno-Balandrán E; Garzón M; Bódalo C; Reinoso-Suárez F; de Andrés I
    Eur J Neurosci; 2008 Jul; 28(2):331-41. PubMed ID: 18702704
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preoptic area unit activity during sleep and wakefulness in the cat.
    Kaitin KI
    Exp Neurol; 1984 Feb; 83(2):347-57. PubMed ID: 6692872
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Behavioral and polygraphic study of 3 benzodiazepines and a barbiturate in the free implanted cat. Differentiation of the tranquilizing, sedative and hypnotic effects of these drugs in terms of their effects on the sleep-wakefulness cycle].
    Borenstein P; Gekiere F; Brindeau F; Cleau M; Allegre G
    Ann Med Psychol (Paris); 1973 Jun; 2(1):13-43. PubMed ID: 4359451
    [No Abstract]   [Full Text] [Related]  

  • 26. [Role of the brain stem in the modification of epileptic activity in sleep states].
    Hrazdira CL
    Psychiatr Neurol Med Psychol Beih; 1983; 29():88-97. PubMed ID: 6415713
    [No Abstract]   [Full Text] [Related]  

  • 27. Corticosteroids as treatment of epileptic syndromes with continuous spike-waves during slow-wave sleep.
    Buzatu M; Bulteau C; Altuzarra C; Dulac O; Van Bogaert P
    Epilepsia; 2009 Aug; 50 Suppl 7():68-72. PubMed ID: 19682056
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Syntactic analysis of the experimental epileptic EEG.
    Rump S; Kowalczyk M; Penczek P
    Pol J Pharmacol Pharm; 1988; 40(6):585-92. PubMed ID: 3269531
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sleep and arousal mechanisms in experimental epilepsy: epileptic components of NREM and antiepileptic components of REM sleep.
    Shouse MN; Scordato JC; Farber PR
    Ment Retard Dev Disabil Res Rev; 2004; 10(2):117-21. PubMed ID: 15362167
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [The effect of unilateral destruction of the head of the caudate nucleus with kainic acid on the structure of the wakefulness-sleep cycle and the EEG in rats].
    Vataev SI; Dem'ianenko GP; Titkov ES; Oganesian GA
    Zh Evol Biokhim Fiziol; 1996; 32(4):434-9. PubMed ID: 9054178
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High frequency activities in the human orbitofrontal cortex in sleep-wake cycle.
    Nishida M; Uchida S; Hirai N; Miwakeichi F; Maehara T; Kawai K; Shimizu H; Kato S
    Neurosci Lett; 2005 May; 379(2):110-5. PubMed ID: 15823426
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of selective neuronal nitric oxide synthase inhibition on sleep and wakefulness in the rat.
    Cavas M; Navarro JF
    Prog Neuropsychopharmacol Biol Psychiatry; 2006 Jan; 30(1):56-67. PubMed ID: 16023276
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of epileptic dogs as an animal model of human epilepsy.
    Löscher W; Schwartz-Porsche D; Frey HH; Schmidt D
    Arzneimittelforschung; 1985; 35(1):82-7. PubMed ID: 4039156
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Epileptic and non-epileptic disorders related to the sleep-wake cycle].
    Karbowski K
    Schweiz Rundsch Med Prax; 1988 Aug; 77(35):897. PubMed ID: 3187269
    [No Abstract]   [Full Text] [Related]  

  • 35. [Event-related potential (P300) in two epileptic cases with continuous spike-waves during slow wave sleep].
    Kohno C
    No To Hattatsu; 2000 Jan; 32(1):44-8. PubMed ID: 10655751
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Response of polygraphic sleep to phenytoin treatment for epilepsy. A longitudinal study of immediate, short- and long-term effects.
    Röder-Wanner UU; Noachtar S; Wolf P
    Acta Neurol Scand; 1987 Sep; 76(3):157-67. PubMed ID: 3687367
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [EEG polygraphic study of wakefulness and sleep in a syndrome of myoclonus of action and intention].
    Kurtz D; Micheletti G; Warter JM; Duchêne H; Midenet J; Rohmer F
    Rev Electroencephalogr Neurophysiol Clin; 1973; 3(3):255-67. PubMed ID: 4220093
    [No Abstract]   [Full Text] [Related]  

  • 38. Dose-related effects of phenobarbitone on human sleep-waking patterns.
    Karacan I; Orr W; Roth T; Kramer M; Thornby J; Bingham S; Kay D
    Br J Clin Pharmacol; 1981 Sep; 12(3):303-13. PubMed ID: 7295460
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Epilepsy with continuous spike and wave during slow wave sleep: a case report].
    Wang J; Chen YB; Liang D
    Zhongguo Dang Dai Er Ke Za Zhi; 2012 Jan; 14(1):71-2. PubMed ID: 22289759
    [No Abstract]   [Full Text] [Related]  

  • 40. The effects of diphenylhydantoin, phenobarbital, and diazepam on the penicillin-induced epileptogenic focus in the rat.
    Edmonds HL; Stark LG; Hollinger MA
    Exp Neurol; 1974 Nov; 45(2):377-86. PubMed ID: 4213819
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.